II B.Tech II Semester Examinations,APRIL 2011 MATHEMATICS-III Metallurgy And Material Technology
Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Derive polar form of C-R equations.
(b) Find the regular function whose imaginary part is $\frac{x-y}{x^{2}+y^{2}}$
2. (a) Does there exist a 4 regular graph on 6 vertices? If so construct one graph.
(b) Determine whether the following graph (Figure 1) has Hamiltonian circuit. If it does, find such circuit.

Figure 1:
3. (a) Evaluate $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z$ where C: $|z|=3 / 2$
(b) Evaluate $\int_{c} \frac{z-1}{(z+1)^{2}(z-2)} d z$ where C is the circle $x^{2}+y^{2}=4$
4. (a) Using the method of contour integration prove that $\int_{0}^{\infty} \frac{2 \operatorname{Cos}\left(1+x^{2}\right)}{x^{1+\alpha}} d x=0 \quad(0<$ $\alpha<1$)
(b) Find the poles and residues at those poles of the function $\mathrm{f}(\mathrm{z})=\frac{z^{2}}{(z-1)^{2}(z+2)}$ $[8+7]$
5. (a) Find and plot the rectangular region $0 \leq x \leq 1,0 \leq y \leq 2$ under the transformation $w=\sqrt{2} e^{i \frac{\pi}{4}} z+(1-2 i)$.
(b) Find the bilinear transformation that maps the points $\infty, i, 0$ into the points $0, i, \infty$.
$[7+8]$
6. If $\mathrm{P}_{6}(2)=\mathrm{a} \& \mathrm{P}_{7}(2)=\mathrm{b}$, then P.T.
(a) $P_{6}^{1}(2)=\frac{7}{3}(b-2 a)$
(b) $P_{8}(2)=\frac{1}{8}(30 b-7 a)$
7. (a) P.T. $\beta\left(m+\frac{1}{2}, m+\frac{1}{2}\right)=\frac{\pi}{m \cdot \beta(m, m) 2^{4 m-1}}$
(b) S.T. $\int_{0}^{1} \frac{x^{n}}{\sqrt{1-x^{2}}} d x=\frac{2.4 .6---(n-1)}{1.3 .5--n}$ where ' n ' is an odd integer
8. For the function $\mathrm{f}(\mathrm{z})=\frac{2 z^{3}+1}{z^{2}+z}$ find
(a) Find the Taylsor's series expansion of about $\mathrm{z}=3$.
(b) Explain $\mathrm{f}(\mathrm{z})=$ Cos z in Taylor's series about $\mathrm{z}=\pi \mathrm{i}$.

II B.Tech II Semester Examinations,APRIL 2011
MATHEMATICS-III
Metallurgy And Material Technology
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) P.T. $\int_{-1}^{1} P_{n}(x) d x=0 ; n \neq 0$
(b) P.T. $\int_{-1}^{1} P_{n}(x)\left(1-2 x t+t^{2}\right)^{-1 / 2} d x=\frac{2 t^{n}}{2 n+1}$ where n is a + ve integer.
2. Find Minimum spanning tree (MST) of the following weighted graph G (Figure 2) by Kruskal algorithm.

Figure 2:
3. (a) P.T. $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta=\frac{5 \pi}{256}$
(b) P.T. $\frac{d}{d x}\left\{J_{0}(x)\right\}=-J_{1}(x)$
4. (a) Find the Taylor's series expansion of $f(z)=\log \left(\frac{1+z}{1-z}\right)$ about $z=0$. Also find the radius of convergence.
(b) Expand $\frac{7 z^{2}+9 z-18}{z^{3}-9 z}$ about $|z-3|>6$ as Laurent's series. Find the region of convergence.
5. (a) Find angle of rotation at the point $z=z+i$ when the transformation is $w=z^{2}$. Also find the scale factor of the transformation at that point.
(b) In the transformation $w=i \frac{1-z}{1+z}$ show that the interior of the circle $|z|=1$ is represented in the w-plane above the real axis.
6. (a) Find the Residues of $\mathrm{f}(\mathrm{z})=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$.
(b) Evaluate by the method of complex variable the integral $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{3}} d x .[8+7]$
7. (a) From the integral $\int_{0} \frac{d z}{z+4}$ S.T $\int_{0}^{\pi} \frac{1+4 \cos \theta}{17+8 \cos \theta}=0$ where C: $|z|=1$
(b) If C is a closed curve described in + ve sense and $\mathrm{f}\left(\mathrm{z}_{0}\right)=\int_{c} \frac{z^{4}+z}{\left(z-z_{0}\right)^{4}} d z$ show that $\mathrm{f}\left(\mathrm{z}_{0}\right)=8 \pi i z_{0}$ is where z_{0} is a point inside ' C ' and $\mathrm{f}\left(\mathrm{z}_{0}\right)=0$ if z_{0} lies outside 'C'.
8. (a) If u is a harmonic function, then S.T. $w=u^{2}$ is not a harmonic function, unless ' u ' is a constant.
(b) Determine the analytic function whose imaginary part is $\mathrm{u}-\mathrm{v}=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-2 \cosh y} \& f(\pi / 2)=0$

II B.Tech II Semester Examinations,APRIL 2011
MATHEMATICS-III
Metallurgy And Material Technology
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Express $\mathrm{P}_{5}(\mathrm{x})$ as a polynomial.
(b) P.T. $\int_{0}^{1} P_{n}(x) d x=0$ if n is even.
2. (a) Evaluate using Cauchy integral function $\oint \frac{\operatorname{Cos} \pi z}{z^{2}-1} d z$ around the rectangle $2 \pm \mathrm{i}$, $-2 \pm \mathrm{i}$
(b) Find the Residues of $\mathrm{f}(\mathrm{z})=\frac{1+e^{z}}{\operatorname{Sin} z+z \operatorname{Cos} z}$ at $\mathrm{z}=0$
3. (a) Is there a simple graph corresponding to the following degree sequence
i. $(1,1,2,3)$
ii. $(2,2,4,6)$
(b) Find the shortest path between the vertex ' a ' and vertex ' h ' in the following weighted graph (figure 3).

Figure 3:
4. (a) Show that the transformation $w=\frac{i z+2}{4 z+i}$ transforms the real axis in the z-plane into a circle in the w-plane. Find the centre and radius of the circle.
(b) Show that the transformation $w(z+i)^{2}=1$ transforms the inside of the circle $|z|=1$ on the exterior of the parabola.
5. State and prove Laurent's Theorem of complex function $f(z)$.
6. (a) Evaluate $\int_{c} \frac{3 z^{2}+7 z+1}{z+1} d z$ where C: $|z+i|=1$
(b) Evaluate $\int_{c} \frac{z^{2}-z+1}{z-1} d z$ where C: $|z|=1 / 2$ taken in anticlockwise sense
7. (a) S.T. $J_{4}(x)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right) J_{1}(x)+\left(1-\frac{24}{x^{2}}\right) J_{0}(x)$
(b) S.T. $\int_{0}^{\alpha} \frac{x^{2}}{\left(1+x^{4}\right)^{3}} d x=\frac{5 \pi \sqrt{2}}{128}$
8. S.T. the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3} y-x y^{3}+x y+x+y$ can be the imaginary part of an analytic function of $z=x+i y$

II B.Tech II Semester Examinations,APRIL 2011
 MATHEMATICS-III
 Metallurgy And Material Technology

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the Residues of $f(z)=z^{2} e^{\frac{1}{z}}$ at the pole $z=0$.
(b) Evaluate $\int_{c} \frac{3 \sin z d z}{\left(z^{2}-\frac{\pi^{2}}{4}\right)}$ where c is $|z|=\pi$.
2. (a) Find the image of the circle $|z-1|=1$ in the complex plane under the mapping $\mathrm{w}=\frac{1}{z}$
(b) Find the image and draw a rough sketch of the mapping of the region $1<x<$ 2 and $2<y<3$ under the mapping $w=e^{z}$
3. (a) P.T. $\int_{0}^{\alpha} e^{-y^{1 / m}} d y=m \Gamma(m)$
(b) Express $\mathrm{J}_{2}(\mathrm{x})$ interms of $\mathrm{J}_{0}(\mathrm{x}) \& \mathrm{~J}_{1}(\mathrm{x})$.
4. (a) Evaluate $\int_{C} \frac{e^{z}}{z(z+1)} d z$ where $\mathrm{C}:|z-1| \Rightarrow 3$
(b) Evaluate $\int_{C} \frac{d z}{z(z+i \pi)}$ where C : $|z+3 i|=1$
5. (a) Prove that, for all $\mathbf{x}, x^{2}=\frac{16}{429} P_{7}(x)+\frac{8}{39} P_{5}(x)+\frac{14}{33} P_{3}(x)+\frac{1}{3} P_{1}(x)$
(b) Show that $\int_{-1}^{1} x^{k} P_{n}(x) d x=0$ for $\mathrm{k}=0,1,2, \mathrm{n}-1$
6. (a) Represent the function $\mathrm{f}(\mathrm{z})=\frac{z}{(z-3)(z-1)}$ by a series of positive and negative. Powers of (z-1), which converges to $\mathrm{f}(\mathrm{z})$ when $0<|z-1|<2$
(b) Expand Sinh z by Taylor's series about $\mathrm{z}=\pi \mathrm{i}$
(c) With in what circle with centre at the origin, does the Maclaurin's series for the function Tanh z converges to the function?
7. Find the minimal spanning tree for the following Graph (Figure 7) using Prim's algorithm.
8. (a) Find the analytic function $f(z)=u+i v$, given that $2 \mathrm{u}+\mathrm{v}=e^{2 x}\{(2 x+y) \cos 2 y+(x-2 y) \sin 2 y\}$.
(b) If $(\mathrm{x}+\mathrm{iy})^{1 / 3}=\mathrm{a}+\mathrm{ib}$, then P.T. $4\left(a^{2}-b^{2}\right)=\frac{x}{a}+\frac{y}{b}$.

Figure 7:

