www.FirstRanker.com

R07

Set No.1

IV B.Tech I Semester Supplementary Examinations, February/March, 2011 **ROBOTICS**

(Mechanical Engineering)

Time: 3 hours

Code No. M0324 /R07

Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	(a) Write the Asimov's laws of robotics.	[4]
	(b) Explain how automation and robotics are related.	[5]
	(c) Explain the classification of robots by coordinate system.	[7]
2.	(a) Describe the degrees of freedom associated with the four common robot	
	configurations with help schematic diagrams.	[8]
	(b) Differentiate between hydraulic and pneumatic drive systems used in robots	[8]
3.	(a) Find the rotation matrix that represents the rotation of \emptyset angle about the vector	
	$\bar{r} = [1, 1, 1]^{\mathrm{T}}$	[8]
	(b) Find a homogeneous transformation matrix that represents a rotation of ' \propto ' angle	
	about the OX axis, followed by a translation of 'a' units along the OX axis,	
	followed by a translation of 'd' units along the OZ axis, followed by a rotation	
	of ' θ ' angle about the OZ axis.	[8]

4. Obtain D-H parameters for a three link planer arm shown in Fig.1. Determine the direct kinematics equation.

Fig. 1

1 of 2

R07

Set No.1

5.	(a) What is a Jacobian ?	[4]	
	(b) Compute the Jacobian for a two link planar arm shown in Fig. 2.	[12]	
6.	a) A point to point robot with a revolute joint moving with velocity of 15 deg/sec, traverses from an initial position of 12^0 to a final position of 60 deg/sec. Determine the position and velocity at the end of 1.2 and 3 seconds. The range of initial and final		
	position is covered in 6 seconds with a finite acceleration of 8 deg/sec ² .	[8]	
	(b) Explain different methods of Robot programming.	[8]	
7.	(a) Explain the working principle of a stepper motor used in robots	[8]	
	(b) Differentiate between absolute and incremental encoders.	[8]	
8.	(a) What are the general considerations in robot material handling? Explain?	[8]	
	(b) What are the desirable features of a robot for successful machine tool load/	unload	
	applications?	[8]	

2 of 2

Code No. M0324 /R07	R07	Set No.2
IV B.Tech I Semester	r Supplementary Examinations	, February/March,2011
	ROBOTICS	
	(Mechanical Engineering)
Time: 3 hours		Max. Marks: 80
	Answer any FIVE Questions	
	All Questions carry equal mark	ks
1. (a) Explain the classific	cation of industrial robots according	ng to their control
Systems.		[8]
(b) Explain the following	ng with examples.	
(i) Fixed au	itomation.	[4+4]
(ii) Flexible	automation.	
2 (a) William in an in figure		[2]
2. (a) what is an end effe	tupes of grippers	
(c) Give the line diagr	ams of (i) Articulated robot (ii) S(
(c) Give the fine diagra	and of (1) Afficulated foot (1) Se	
3. (a) If $a_{xyz} = [4,3,2]^T$, by	$_{\rm xyz} = [6,2,4]^{\rm T}$, are the co-ordinates	of two points with respect to
the reference frame	OXYZ, determine the correspond	ding points with respect to the
rotated OUVW mol	bile frame if it has been rotated 60	D^0 about the OZ axis. [8]
(b) A matrix is to be de	etermined that represents a rotation	n of \propto angle about the OX axis,
followed by a trans	lation of 'b' units along the rotate	d OV axis [8]
	~	
4. Obtain D-H Parameters	s for the spherical arm shown in F	ig. 1 and determine the direct
Kinematics equations.		[16]
revolute		a ₃

1 of 2

R07

Set No.2

- 5. Compute the Jacobian for 3-link planar arm shown in Fig. 2.
- 6. (a) Compute the time law q(t) for a joint trajectory with velocity profile of the type q(t) = k sin(αt) from q(0) = to q(3) = 4 [8]
 (b) What are the capabilities and limitations of lead through programming methods? [8]
 7. (a) Explain about electric servomotors employed in robots. [8]
 (b) Discuss about velocity transducers. [8]
- 8. (a) Explain the requirements of a robot for spray-coating applications?
 [8]
 (b) Explain the robotic arc- sensing systems?
 [8]

2of 2

R07

Set No.3

Max. Marks :80

IV B.Tech I Semester Supplementary Examinations, February/March,2011 ROBOTICS

(Mechanical Engineering)

Time : 3 hours

Code No. M0324 /R07

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Give the definition of an industrial provided by RIA. [4] (b) Differentiate between fixed automation and programmable automation automation. [6] (c) Enumerate the industrial applications of robot [6] 2. (a) Explain the basic components of a robot. [8] (b) Discuss the factors to be considered in the selection of grippers. [8] 3. (a) List the properties of rotation matrices. [8] (b) A mobile body reference frame OABC is rotated 45° about OY axis of the fixed base reference frame OXYZ. If $P_{xyz} = [2,4,6]^T$ and $Q_{xyz} = [359]^T$ are the coordinates with respect to OXYZ frame, determine coordinates of P and Q with respect to the OABC frame. [8]

4. Determine the D-H parameters for the parallelogram arm shown in Fig.1 and obtain the direct kinematics equation.

1 of 2

R07

Set No.3

5. Derive the dynamic equation of motion for a revolute–prismatic robot arm manipulator shown in Fig. 2

- 6. (a) Given the values for the joint variable: q(0) = 0, q(2) =2 and q(4) =3, compute the two fifth order interpolating polynomials with continuous velocities and accelerations. [10+6]
 - (b) Explain the WAIT, SIGNAL and DELAY commands used in robot programming.
- 7. (a) What are various position sensors used in robotic applications? Describe them. [10]
 (b) Differentiate between pneumatic and hydraulic actuators. [6]
- 8. (a) Discuss the considerations to be made while designing for robotic assembly.
 (b) Discuss the advantages and benefits of robot arc welding.
 [8]

IV B.Tech I Semester Supplementary Examinations, February/March, 2011 ROBOTICS

(Mechanical Engineering)

Time : 3 hours

Max. Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1.	(a) What is the role a robot in industrial automation? Explain.	[8]
	(b) Discuss about playback robots.	[8]
2.	(a) Define the degrees of freedom. Determine the number of degrees of freedom	
	for a SCARA robot.	[6]
	(b) List the advantages and disadvantages of electric drive system compared to	
	hydraulic drive system used robots.	[5]
	(c) Discuss about mechanical grippers.	[5]

3. (a) A Vector P is rotated about Z axis by θ degrees and is subsequently rotated about X- axis by Ø degrees. Give rotation matrix which accomplishes these rotations in the given order. [6]

(b) Determine the axis of rotation and the angle of rotation about the same axis for the following rotation matrix. [4]

 $\begin{bmatrix} \frac{\sqrt{3}}{2} & 0 & 0.5\\ 0 & 1 & 0\\ -0.5 & 0 & \frac{\sqrt{3}}{2} \end{bmatrix}$

(c) Determine the homogeneous transformation matrix to represent a rotation of 60⁰ about OX- axis and a translation of 10 units along the OB-axis of the mobile frame.

R07

[4x4]

4. Solve the direct kinematics problem for the cylindrical arm shown in Fig.1.

- 5. Derive the dynamic equations for the two link manipulator shown in Fig.2. The lengths of the links 1 and 2 are L₁ and L₂ respectively. [16]
- 6. (a) What are the characteristics of robot task-level languages? Explain. [8]
 - (b) A joint of a robot manipulator traverses from an initial position of 20⁰ to a final position of 60⁰ in 4 seconds. Assumming a fifth degree polynomial and a starting acceleration of 3deg/ sec², determine the acceleration at the end of 4 seconds. Take initial and final velocities as zero. [8]

7. Write short notes on

- (a) Pneumatic actuators
- (b) Resolvers
- (c) Tachometers
- (d) Stepper motors
- 8. (a) Explain the requirements of a robot for spray-coating applications? [8+8](b) Describe the problems encountered in the use of robots for arc welding applications?

2 of 2

www.FirstRanker.com