Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March, 2011 ROBOTICS (Mechanical Engineering)

Time: $\mathbf{3}$ hours

Max. Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Write the Asimov's laws of robotics.
(b) Explain how automation and robotics are related.
(c) Explain the classification of robots by coordinate system.
2. (a) Describe the degrees of freedom associated with the four common robot configurations with help schematic diagrams.
(b) Differentiate between hydraulic and pneumatic drive systems used in robots
3. (a) Find the rotation matrix that represents the rotation of \emptyset angle about the vector $\bar{r}=[1,1,1]^{\mathrm{T}}$.
(b) Find a homogeneous transformation matrix that represents a rotation of ' α ' angle about the OX axis, followed by a translation of ' a ' units along the OX axis, followed by a translation of ' d ' units along the OZ axis, followed by a rotation of ' θ ' angle about the OZ axis.
4. Obtain D-H parameters for a three link planer arm shown in Fig.1. Determine the direct kinematics equation.

Fig. 1

Fig. 2

1 of 2
5. (a) What is a Jacobian ?
(b) Compute the Jacobian for a two link planar arm shown in Fig. 2.
6. (a) A point to point robot with a revolute joint moving with velocity of $15 \mathrm{deg} / \mathrm{sec}$, traverses from an initial position of 12^{0} to a final position of $60 \mathrm{deg} / \mathrm{sec}$. Determine the position and velocity at the end of 1,2 and 3 seconds. The range of initial and final position is covered in 6 seconds with a finite acceleration of $8 \mathrm{deg} / \mathrm{sec}^{2}$.
(b) Explain different methods of Robot programming.
7. (a) Explain the working principle of a stepper motor used in robots
(b) Differentiate between absolute and incremental encoders.
8. (a) What are the general considerations in robot material handling? Explain?
(b) What are the desirable features of a robot for successful machine tool load/unload applications?

IV B.Tech I Semester Supplementary Examinations, February/March,2011
 ROBOTICS (Mechanical Engineering)

Time: $\mathbf{3}$ hours

Max. Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Explain the classification of industrial robots according to their control Systems.
(b) Explain the following with examples.
(i) Fixed automation.
(ii) Flexible automation.
2. (a) What is an end effector of robot?
(b) Describe different types of grippers.
(c) Give the line diagrams of (i) Articulated robot (ii) SCARA.
3. (a) If $\mathrm{a}_{\mathrm{xyz}}=[4,3,2]^{\mathrm{T}}, b_{\mathrm{xyz}}=[6,2,4]^{\mathrm{T}}$, are the co-ordinates of two points with respect to the reference frame OXYZ , determine the corresponding points with respect to the rotated OUVW mobile frame if it has been rotated 60° about the OZ axis.
(b) A matrix is to be determined that represents a rotation of \propto angle about the OX axis, followed by a translation of ' b ' units along the rotated OV axis
4. Obtain D-H Parameters for the spherical arm shown in Fig. 1 and determine the direct Kinematics equations.

Fig. 2
5. Compute the Jacobian for 3-link planar arm shown in Fig. 2.
6. (a) Compute the time law $\mathrm{q}(\mathrm{t})$ for a joint trajectory with velocity profile of the type $\dot{q}(t)=k \sin (\alpha t)$ from $\mathrm{q}(0)=$ to $\mathrm{q}(3)=4$
(b) What are the capabilities and limitations of lead through programming methods? [8]
7. (a) Explain about electric servomotors employed in robots.
(b) Discuss about velocity transducers.
8. (a) Explain the requirements of a robot for spray-coating applications?
(b) Explain the robotic arc- sensing systems?

IV B.Tech I Semester Supplementary Examinations, February/March,2011 ROBOTICS
 (Mechanical Engineering)

Time : $\mathbf{3}$ hours
Max. Marks :80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Give the definition of an industrial provided by RIA.
(b) Differentiate between fixed automation and programmable automation automation.
(c) Enumerate the industrial applications of robot
2. (a) Explain the basic components of a robot.
(b) Discuss the factors to be considered in the selection of grippers.
3. (a) List the properties of rotation matrices.
(b) A mobile body reference frame OABC is rotated 45° about OY axis of the fixed base reference frame OXYZ. If $P_{x y z}=[2,4,6]^{T}$ and $Q_{x y z}=[359]^{T}$ are the coordinates with respect to OXYZ frame, determine coordinates of P and Q with respect to the OABC frame.
4. Determine the D-H parameters for the parallelogram arm shown in Fig. 1 and obtain the direct kinematics equation.

Fig. 1
1 of 2
5. Derive the dynamic equation of motion for a revolute-prismatic robot arm manipulator shown in Fig. 2

Fig. 2
6. (a) Given the values for the joint variable: $q(0)=0, q(2)=2$ and $q(4)=3$, compute the two fifth order interpolating polynomials with continuous velocities and accelerations.
(b) Explain the WAIT, SIGNAL and DELAY commands used in robot programming.
7. (a) What are various position sensors used in robotic applications? Describe them.
(b) Differentiate between pneumatic and hydraulic actuators.
8. (a) Discuss the considerations to be made while designing for robotic assembly.
(b) Discuss the advantages and benefits of robot arc welding.

IV B.Tech I Semester Supplementary Examinations, February/March, 2011 ROBOTICS
 (Mechanical Engineering)

Time : $\mathbf{3}$ hours
Max. Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What is the role a robot in industrial automation? Explain.
(b) Discuss about playback robots.
2. (a) Define the degrees of freedom. Determine the number of degrees of freedom for a SCARA robot.
(b) List the advantages and disadvantages of electric drive system compared to hydraulic drive system used robots.
(c) Discuss about mechanical grippers.
3. (a) A Vector P is rotated about Z axis by θ degrees and is subsequently rotated about X - axis by \varnothing degrees. Give rotation matrix which accomplishes these rotations in the given order.
(b) Determine the axis of rotation and the angle of rotation about the same axis for the following rotation matrix.

$$
\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & 0.5 \\
0 & 1 & 0 \\
-0.5 & 0 & \frac{\sqrt{3}}{2}
\end{array}\right]
$$

(c) Determine the homogeneous transformation matrix to represent a rotation of 60° about OX- axis and a translation of 10 units along the OB-axis of the mobile frame.
4. Solve the direct kinematics problem for the cylindrical arm shown in Fig.1.

5. Derive the dynamic equations for the two link manipulator shown in Fig.2. The lengths of the links 1 and 2 are L_{1} and L_{2} respectively.
6. (a) What are the characteristics of robot task-level languages? Explain.
(b) A joint of a robot manipulator traverses from an initial position of 20^{0} to a final position of 60° in 4 seconds. Assumming a fifth degree polynomial and a starting acceleration of $3 \mathrm{deg} / \mathrm{sec}^{2}$, determine the acceleration at the end of 4 seconds. Take initial and final velocities as zero.
7. Write short notes on
(a) Pneumatic actuators
(b) Resolvers
(c) Tachometers
(d) Stepper motors
8. (a) Explain the requirements of a robot for spray-coating applications?
(b) Describe the problems encountered in the use of robots for arc welding applications?

