Code: R7210103

B.Tech II Year I Semester (R07) Supplementary Examinations, May 2013

STRENGTH OF MATERIALS - I

(Civil Engineering)
Time: 3 hours
Max. Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Define stress and strain and specify the units for both. Write two examples for each of the ductile material and brittle material.
(b) A steel rod 4 m long and 20 mm diameter subjected to an axial tensile load of 45 kN . Find the change in length, diameter and the volume of the rod. Take $E_{S}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$.

2 A tensile load of 60 kN is gradually applied to a circular bar of 4 cm diameter and 5 m long. If the value of $E=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine; Stretch in the rod, stress in the rod, strain energy absorbed by the rod.

3 A cantilever 2.0 m long is loaded with a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ run over a length of 1.25 m from the free end. It also carries a point load of 2.5 kN at a distance of 0.25 m from the free end. Draw the shear force and bending moment diagrams of the cantilever.

4 Derive the bending equation stating the assumptions made. Draw the strain variation, stress variation across the cross - section of the beam.

5 A rectangular beam 100 mm wide is subjected to a maximum shear force of 100 kN . Find the depth of the beam if the maximum shear stress is $6 \mathrm{~N} / \mathrm{mm}^{2}$.

6 (a) What are the limitations of the moment area method?
(b) State and prove moment area theorem-1.

7 Define the terms:
(a) Circumferential stress.
(b) Longitudinal stress and derive the expressions for the same in thin cylinders.

8 Derive a formula for the difference of radii for shrinkage of a compound thick cylindrical shell.

