Download VTU B-Tech/B.E 2019 June-July 1st And 2nd Semester 2015 June-July 14MAT21 Engineering Mathematics II Question Paper

Download VTU ((Visvesvaraya Technological University) B.E/B-Tech 2019 July ( Bachelor of Engineering) First & Second Semester (1st Semester & 2nd Semester) 2015 June-July 14MAT21 Engineering Mathematics II Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

RpF
k
0
0
14MAT21
0
0
O
5.
.,1
O E
PART ? A
4
d
4
?
,
d
3
u d
z
u du

O
-0 1 a. Solve 4
44
4 ?4 ' ? 23 +12-. + 36y = 0.
t
dx dx dx dx
c\
Coi
day
cl
2
y dy
/01:1
b. Solve
cilc
+ 6?
dx2
+11?
dx
+ 6y = e
x
+1 using inverse diffeNntiff operator method.
O A
c
4
L
'
''' 3
(07 Marks)
g cr
z '
1
C. Solve (D
2
? 2D)y -- e
x
sinx using method of undete
O
on
0 00
ii
coe dents.
}
(07 Marks)
tz
2 a. Solve (4D
4
? 8D
3
? 7D
2
+ 11D + 6)y = 0.
r
) ''' li Ask %
b. Solve (D
2
+ 4.)y ? x
2
+ e' using inverse differk4tfal operator method. (07 Marks)
Marks)
O 4
8
c. Solve (1D
2
? 2D +.2)y = e
x
tan x using method of variation of parameters. (07 Marks)
= .
1
* ..
-
4
PRT ? B
.5 ,S
(;)
.
. cid
,

? ..,
cl I 3 a. Solve ?
dx
? 7x + y = 0, ? ? ?5y = 0 .
4.---t, d
y
,
,---s,
-a 8
?
dt dt
c
,,:\,
b.

N
aive
x
2
?
d'y
+ 4x ?
dy
S.)
e
x
. (07 Marks)
dx
2
d ..,..
1

Solve y ? 2px +.' p by solving for x. (07 Marks)
d

2
y
C.) __I'
Vi 4?)
4 a. Solve (1,4
1
?
x)2
?
dx 2
+ (1 + x)
dy
+ y = 2 sin (log(1 + x)) .
dx
(06 Marks)
0
USN
Second Semester B.E. Degree Examination, June/July 2015
O Engineering Mathematics - II
Max. MarlreVd
.
0
-

Note: Answer any FIVE full questions, selecting ONE full question from f
4..,
91 Part.
Time: 3 hrs.
(06 Marks)
(06 Marks)
-5 is
1
1
"
.

, a
dy
?
dx
=
x y
A
. e -- by solving for P.
O?
dx dy ? ?y x
00

0
-f, .11.r t
1/4
te Solve (px ? y) (py + x) = a
2
p by reducing to Clairaut's form.
8 .
o
rts, PART ? C
? ?g
0 44 5 a. From the function f(x
2
+ y
2
, Z ? xy) = 0 form the partial differential equation.
b. Derive one dimensional wave equation as
I 2-x
c. Evaluate f xydydx by changing the order of integration.
x
2

1 oft
0
0
z
,9
2
1.1 2 7
2
11
=
at2
E
aX
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
FirstRanker.com - FirstRanker's Choice
RpF
k
0
0
14MAT21
0
0
O
5.
.,1
O E
PART ? A
4
d
4
?
,
d
3
u d
z
u du

O
-0 1 a. Solve 4
44
4 ?4 ' ? 23 +12-. + 36y = 0.
t
dx dx dx dx
c\
Coi
day
cl
2
y dy
/01:1
b. Solve
cilc
+ 6?
dx2
+11?
dx
+ 6y = e
x
+1 using inverse diffeNntiff operator method.
O A
c
4
L
'
''' 3
(07 Marks)
g cr
z '
1
C. Solve (D
2
? 2D)y -- e
x
sinx using method of undete
O
on
0 00
ii
coe dents.
}
(07 Marks)
tz
2 a. Solve (4D
4
? 8D
3
? 7D
2
+ 11D + 6)y = 0.
r
) ''' li Ask %
b. Solve (D
2
+ 4.)y ? x
2
+ e' using inverse differk4tfal operator method. (07 Marks)
Marks)
O 4
8
c. Solve (1D
2
? 2D +.2)y = e
x
tan x using method of variation of parameters. (07 Marks)
= .
1
* ..
-
4
PRT ? B
.5 ,S
(;)
.
. cid
,

? ..,
cl I 3 a. Solve ?
dx
? 7x + y = 0, ? ? ?5y = 0 .
4.---t, d
y
,
,---s,
-a 8
?
dt dt
c
,,:\,
b.

N
aive
x
2
?
d'y
+ 4x ?
dy
S.)
e
x
. (07 Marks)
dx
2
d ..,..
1

Solve y ? 2px +.' p by solving for x. (07 Marks)
d

2
y
C.) __I'
Vi 4?)
4 a. Solve (1,4
1
?
x)2
?
dx 2
+ (1 + x)
dy
+ y = 2 sin (log(1 + x)) .
dx
(06 Marks)
0
USN
Second Semester B.E. Degree Examination, June/July 2015
O Engineering Mathematics - II
Max. MarlreVd
.
0
-

Note: Answer any FIVE full questions, selecting ONE full question from f
4..,
91 Part.
Time: 3 hrs.
(06 Marks)
(06 Marks)
-5 is
1
1
"
.

, a
dy
?
dx
=
x y
A
. e -- by solving for P.
O?
dx dy ? ?y x
00

0
-f, .11.r t
1/4
te Solve (px ? y) (py + x) = a
2
p by reducing to Clairaut's form.
8 .
o
rts, PART ? C
? ?g
0 44 5 a. From the function f(x
2
+ y
2
, Z ? xy) = 0 form the partial differential equation.
b. Derive one dimensional wave equation as
I 2-x
c. Evaluate f xydydx by changing the order of integration.
x
2

1 oft
0
0
z
,9
2
1.1 2 7
2
11
=
at2
E
aX
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)

14MAT21
2 a u
a1.1
6 a. Solve ? = sinxsiny for which ? = ?2siny when x ? 0 and u = 0 when y is an odd
&ay
ay
multiple of
2

?.
a
u
02
u.

b. Derive one dimensional heat equation as ? = c
2
?
ax
2
.
at
1 a xi-.
c. Evaluate
I
J
J
(x + y + z)dyclxdz
-I 0 x-z
(06 Marks)
10
rni
(07 Marks)
(07 Marks)
PART ?D
7 a. Find the area between the parabolas? = 4ax and x
2
= 4ay using do teg;ral. (06 Marks)
dx

b. Evaluate using beta and gamma functions. Or Marks)
0
Express the vector Zi ? 2xj + yk in cylindrical coordinates. c. (07 Marks)
n/2 -02
, \
' '
S
V
I
%
1 I
V
II4? W

b. Evaluate f .Ni n 9 de x
d8
1
o
0 Vsin0
us' beta and gamma functions.
c. Express the vector field 2yi ? zj in spherical polar coordinate system. (07 Marks)
1 , 4
66
0 1 c
PART ?E
Vi
I
an
e
at
? e
-at
. Find the
l
Laplace trans eOZN)fte
-4t
sin3t and
%.
t
(06 Marks)
b. Express f(t) in to
,
unit step function and find its Laplace transform given that
i
t
2
, 0 itiZ2
4t,
L
re)< t < 4 . (07 Marks)
114
\ t > 4
{( 1)
2
9)
1
using convolution theorem.
C.
(07 Marks)
find L{ fW} .
8 a. Find the volume of the solid bounded by the planes x ? 0, y = 0, x + y + z = 1 and z = 0
using triple integral. (06 Marks)
(07 Marks)
f(t)
-
10-
-
k, a. A periodic function f(t) with period 2 is defined by f(t)
t, 02 ?t, 1b. Find L
-1
{
3s
2
+ 4s +8
5s ? 2
+
0

)1.
(06 Marks)
(07 Marks)

c. Solve using Laplace transform method
d2y

?
T
+ 2
dy
+ y = te with y(0) = 1, y
1
(0) = -2.
dt dt
(07 Marks)
2 oft
FirstRanker.com - FirstRanker's Choice

This post was last modified on 01 January 2020

whatsapp