Download VTU BE 2020 Jan ME Question Paper 15 Scheme 3rd Sem MATD1P301 Advanced Mathematics I

Download Visvesvaraya Technological University (VTU) BE ( Bachelor of Engineering) ME (Mechanical Engineering) 2015 Scheme 2020 January Previous Question Paper 3rd Sem MATD1P301 Advanced Mathematics I

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

USN

MATD1P301

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020
Advanced Mathematics - I
Time: 3 hrs. Max. Marks:100
Note: Answer FIVE full questions.
(2 + 30
2

a.

1 Express
+
in the form of complex number a + ib. (06 Marks)
b. Prove that (1 + + (1 ? = ?8.
(07 Marks)
c. Find the cube root of - 0 . (07 Marks)
2 a.
Find n
th
derivative of sin(ax + b). (06 Marks)
b. Iffy = a cos(log x) + bsin(log x) . Show that + (2n + 1)xy? + (n
2
+ 1)y,, = 0 . (07 Marks) ,
1
c. Find n
th
derivative ?flog(
2x + 3
(07 Marks)
)10
e
t
2-3x
3 a. Find the angle between the curves. r = a(sin 0 + cos0) and r = 2a cos 0
b. Find the pedal equation for the curve r
2
= a
2
see(20)
c. Expand y --- - Log (cos x) using Maclaurin's series upto 4
th
degree term.
show that xu, + yu ? + zy, = 2 tanu
_ . , a au
b. If u = RI
-
, s, t) where r=
x
? s=
Y
?, t = z Fi ?. no x ?
u
+ y--- + z
a
u
-- .
y
z x Ox cry ez
c. Ifu=x+y+z,v=y+z,w?zfind
a(uvw)

a(x
y
z)
5 a.
Obtain reduction formula for f sin" x dx where n is a positive integer.
Evaluate x
9
VI ? x
2
dx .
rl
I 2
c. Evaluate : Si( + y
-
)dxdy
0
4 a. if
u s
i
n

x
3
y
-
+ z
ax + by + ez

(06 Marks)
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
Important Note
1 2 2
6 a. Evaluate : dx dy dz .
0 0 1
b. Prove that 13(m, n) = r3(n, m)
c. Evaluate : ,
x2
dx .
V2 x
0
(06 Marks)
(07 Marks)
(07 Marks)
1 of 2
FirstRanker.com - FirstRanker's Choice
USN

MATD1P301

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020
Advanced Mathematics - I
Time: 3 hrs. Max. Marks:100
Note: Answer FIVE full questions.
(2 + 30
2

a.

1 Express
+
in the form of complex number a + ib. (06 Marks)
b. Prove that (1 + + (1 ? = ?8.
(07 Marks)
c. Find the cube root of - 0 . (07 Marks)
2 a.
Find n
th
derivative of sin(ax + b). (06 Marks)
b. Iffy = a cos(log x) + bsin(log x) . Show that + (2n + 1)xy? + (n
2
+ 1)y,, = 0 . (07 Marks) ,
1
c. Find n
th
derivative ?flog(
2x + 3
(07 Marks)
)10
e
t
2-3x
3 a. Find the angle between the curves. r = a(sin 0 + cos0) and r = 2a cos 0
b. Find the pedal equation for the curve r
2
= a
2
see(20)
c. Expand y --- - Log (cos x) using Maclaurin's series upto 4
th
degree term.
show that xu, + yu ? + zy, = 2 tanu
_ . , a au
b. If u = RI
-
, s, t) where r=
x
? s=
Y
?, t = z Fi ?. no x ?
u
+ y--- + z
a
u
-- .
y
z x Ox cry ez
c. Ifu=x+y+z,v=y+z,w?zfind
a(uvw)

a(x
y
z)
5 a.
Obtain reduction formula for f sin" x dx where n is a positive integer.
Evaluate x
9
VI ? x
2
dx .
rl
I 2
c. Evaluate : Si( + y
-
)dxdy
0
4 a. if
u s
i
n

x
3
y
-
+ z
ax + by + ez

(06 Marks)
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
Important Note
1 2 2
6 a. Evaluate : dx dy dz .
0 0 1
b. Prove that 13(m, n) = r3(n, m)
c. Evaluate : ,
x2
dx .
V2 x
0
(06 Marks)
(07 Marks)
(07 Marks)
1 of 2
MATDIP301
Solve
1
-
d
= e (ex + x
2
) .
dx
Solve (x
2
+ y
2
)dx= 2xy dy
Solve ?
dx
= ?
x
+ 2y
2
.
dy y
dy
8 a. Solve d
2
,
y
+ 5? + 6y = .
dx
-
dx
2

b. Solve
d
,
y dy
+ 4 + 4y = cos x .
dx
-
dx
2
y
c. Solve
d
? + 3
dy
+ 2y = 12x
2

dx
2
dx
7
a.
b.
C.
(06 Marks)
(07 Marks)
(07 Marks)
(06 Marks)
(07 Marks)
(07 Marks)
2 of 2
FirstRanker.com - FirstRanker's Choice

This post was last modified on 02 March 2020