Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2020 January 13242 NON CBCS Mathematics Previous Question Paper
Code No. 13242 / Non-CBCS
FACULTY OF PHARMACY
B. Pharmacy I ? Year (Non-CBCS)(Backlog) Examination, August 2019
Subject : Mathematics
Time : 3 hr s Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Find the solution of the equation 10
x+3
= 6
2x
.
ii) If tan 35
0
= K then the value of
0 0
0 0
tan125 tan145 1
tan125 tan145
? +
-
.
OR
b) i) log 2
x
+ log 2
(x-2)
= 3.
ii) if tan
3
1
= ? and tan
7
1
= ? then show that tan( ) 1. ? 2? = +
2 a) i) Find the derivative of tan x using first principle.
ii) Show that the function is not differentiable at 2 where
()
?
?
?
?
? ?
=
2 x 2;
2 x 0 x;
x f
OR
b) i) Find the maximum and minimum values of the polynomial
f(x) = x
3
? 4x
2
+ 8x ? 6
ii) If ,
x
y
f xy u ?
?
?
?
?
?
= prove that 2u
y
u
y
x
u
x =
?
?
+
?
?
.
3 a) i) Evaluate
?
- +
dx
2x 5x 3
1
2
ii)
?
+
+
dx
x cos 1
x sin 1
2
2
OR
b) i) Evaluate
?
+
dx
5sinx 4
1
ii) Evaluate
?
- +
+
dx
6 3x x
6 2x
2
4 a) i) If
?
?
?
?
?
?
?
?
?
?
=
2
2
2
c bc ac
bc b ab
ac ab a
A and a
2
+ b
2
+ c
2
= 1 then find A
2
.
ii) Solve the equation 7x + 5y ? 13z + 4 = 0, 9x + 2y + 11z ? 37 = 0,
3x ? y + z = 2 by matrix inversion method.
OR
..2
FirstRanker.com - FirstRanker's Choice
- -
Code No. 13242 / Non-CBCS
FACULTY OF PHARMACY
B. Pharmacy I ? Year (Non-CBCS)(Backlog) Examination, August 2019
Subject : Mathematics
Time : 3 hr s Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Find the solution of the equation 10
x+3
= 6
2x
.
ii) If tan 35
0
= K then the value of
0 0
0 0
tan125 tan145 1
tan125 tan145
? +
-
.
OR
b) i) log 2
x
+ log 2
(x-2)
= 3.
ii) if tan
3
1
= ? and tan
7
1
= ? then show that tan( ) 1. ? 2? = +
2 a) i) Find the derivative of tan x using first principle.
ii) Show that the function is not differentiable at 2 where
()
?
?
?
?
? ?
=
2 x 2;
2 x 0 x;
x f
OR
b) i) Find the maximum and minimum values of the polynomial
f(x) = x
3
? 4x
2
+ 8x ? 6
ii) If ,
x
y
f xy u ?
?
?
?
?
?
= prove that 2u
y
u
y
x
u
x =
?
?
+
?
?
.
3 a) i) Evaluate
?
- +
dx
2x 5x 3
1
2
ii)
?
+
+
dx
x cos 1
x sin 1
2
2
OR
b) i) Evaluate
?
+
dx
5sinx 4
1
ii) Evaluate
?
- +
+
dx
6 3x x
6 2x
2
4 a) i) If
?
?
?
?
?
?
?
?
?
?
=
2
2
2
c bc ac
bc b ab
ac ab a
A and a
2
+ b
2
+ c
2
= 1 then find A
2
.
ii) Solve the equation 7x + 5y ? 13z + 4 = 0, 9x + 2y + 11z ? 37 = 0,
3x ? y + z = 2 by matrix inversion method.
OR
..2
- -
Code No. 13242 / Non-CBCS
- 2 -
b) i) Find the rank of the matrix
?
?
?
?
?
?
?
?
?
? -
=
6 5 4 3
4 3 2 2
3 2 1 1
A
ii) If
?
?
?
?
?
?
?
?
?
?
-
- - =
0 x 1
2 0 2
1 2 0
A is a skew symmetric matrix, then find the value of x.
5 a) i) Find the equation of circle passing thrgh the points (1, 0) (0, 1) (1, 1).
ii) Find the equation of the line having intercepts a and b on the axes such
that a + b = 3 and ab = 1.
OR
b) i) Write the basic mathematical principles are used in Biological testing.
ii) Find the equation of circle passing thrgh ( -7, 1) and having centre at
(-4, -3).
******
FirstRanker.com - FirstRanker's Choice
This post was last modified on 03 May 2020