Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2011 Mathematics Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
B. Pharmacy I-Year (Main & Backtog) Examination, June 2011
MATHEMATICS
Time : Three Hours] [Maximum Marks : 70
Note Answer ALL questions. All questions carry equal marks.
1 1
A.
If sin a
10
, sin 13 and a, 13 are acute then show that a + i =
4
.
9
.1)
.
If tan A = 1
?
2
and tan B = 3
3 3
where A and B are acute angles then find A + B.
OR
AB) (if sin A - sin (60 + A) sin (60 ? A) =
?
4
sin 3A.
3
Prove that 4 sin 20
0
sin 40? sin 60
0
sin 80
0
.
2.
(A)/ Find the derivatives of the following function tan 2x using first principle.
(x
3
1
5u 8u
(ii) If U sec
-
'
then show that +
u
zcot u.
x + y
8x s
y
K
2
x?K if
(iii) If f, given by f(x) w{ 2
if x 1,
is a continuous function on R, then find
<
the value of K.
OR
( j(i) Prove that x' 3x
2
+ 3x + 7 ? 0, has neither maxima nor minima.
) Show that f(x) - ---- sin x (1 + cos x) has a maximum value at x = 3.
HVS--887 1 (Contd.)
FirstRanker.com - FirstRanker's Choice
FACULTY OF PHARMACY
B. Pharmacy I-Year (Main & Backtog) Examination, June 2011
MATHEMATICS
Time : Three Hours] [Maximum Marks : 70
Note Answer ALL questions. All questions carry equal marks.
1 1
A.
If sin a
10
, sin 13 and a, 13 are acute then show that a + i =
4
.
9
.1)
.
If tan A = 1
?
2
and tan B = 3
3 3
where A and B are acute angles then find A + B.
OR
AB) (if sin A - sin (60 + A) sin (60 ? A) =
?
4
sin 3A.
3
Prove that 4 sin 20
0
sin 40? sin 60
0
sin 80
0
.
2.
(A)/ Find the derivatives of the following function tan 2x using first principle.
(x
3
1
5u 8u
(ii) If U sec
-
'
then show that +
u
zcot u.
x + y
8x s
y
K
2
x?K if
(iii) If f, given by f(x) w{ 2
if x 1,
is a continuous function on R, then find
<
the value of K.
OR
( j(i) Prove that x' 3x
2
+ 3x + 7 ? 0, has neither maxima nor minima.
) Show that f(x) - ---- sin x (1 + cos x) has a maximum value at x = 3.
HVS--887 1 (Contd.)
rosx?3sinx +7
dx.
3. (A) (i) Find the value of
cos x + sin x +1
(ii) Evaluate
(iii) Evaluate
/
2 sinx +3cosx +4
_ d
x
3sinx+4cosx?5
r
dx
4 ? cos x
OR
r 1 + sin x
94 ('t.)-- Evaluate j
dx
x+cosx *
j
- 2x+3
(i.) Evaluate
dx
. x
l
+ x
2
- 2 x
i) Evaluate isec
2
x cosec
2
x dx .
4. Show that
1 a
?
a
1
1 b
2
b
3
1 C
2
C'
? (a ? b) (b c) (c ? a) (ab + be +
) Show that
a+b+2c a b
c b+c+2a b
c a c+a+2b
2(a + b c)
3
.
OR
(B) (i) Solve the following equations by Gauss-Jordan method :
3x + 4y + 5z= 18, 2x ? y + 8z = 13, 5x ? 2y + 7z = 20.
1 2 1
If A = 0
1
?1 then find A' 3A
2
A ? 31.
3 ?1 1
FIVS-887 2
(Contd.)
FirstRanker.com - FirstRanker's Choice
FACULTY OF PHARMACY
B. Pharmacy I-Year (Main & Backtog) Examination, June 2011
MATHEMATICS
Time : Three Hours] [Maximum Marks : 70
Note Answer ALL questions. All questions carry equal marks.
1 1
A.
If sin a
10
, sin 13 and a, 13 are acute then show that a + i =
4
.
9
.1)
.
If tan A = 1
?
2
and tan B = 3
3 3
where A and B are acute angles then find A + B.
OR
AB) (if sin A - sin (60 + A) sin (60 ? A) =
?
4
sin 3A.
3
Prove that 4 sin 20
0
sin 40? sin 60
0
sin 80
0
.
2.
(A)/ Find the derivatives of the following function tan 2x using first principle.
(x
3
1
5u 8u
(ii) If U sec
-
'
then show that +
u
zcot u.
x + y
8x s
y
K
2
x?K if
(iii) If f, given by f(x) w{ 2
if x 1,
is a continuous function on R, then find
<
the value of K.
OR
( j(i) Prove that x' 3x
2
+ 3x + 7 ? 0, has neither maxima nor minima.
) Show that f(x) - ---- sin x (1 + cos x) has a maximum value at x = 3.
HVS--887 1 (Contd.)
rosx?3sinx +7
dx.
3. (A) (i) Find the value of
cos x + sin x +1
(ii) Evaluate
(iii) Evaluate
/
2 sinx +3cosx +4
_ d
x
3sinx+4cosx?5
r
dx
4 ? cos x
OR
r 1 + sin x
94 ('t.)-- Evaluate j
dx
x+cosx *
j
- 2x+3
(i.) Evaluate
dx
. x
l
+ x
2
- 2 x
i) Evaluate isec
2
x cosec
2
x dx .
4. Show that
1 a
?
a
1
1 b
2
b
3
1 C
2
C'
? (a ? b) (b c) (c ? a) (ab + be +
) Show that
a+b+2c a b
c b+c+2a b
c a c+a+2b
2(a + b c)
3
.
OR
(B) (i) Solve the following equations by Gauss-Jordan method :
3x + 4y + 5z= 18, 2x ? y + 8z = 13, 5x ? 2y + 7z = 20.
1 2 1
If A = 0
1
?1 then find A' 3A
2
A ? 31.
3 ?1 1
FIVS-887 2
(Contd.)
5. (A) (0 Discuss the set of Postulates defining Boolean Algebra.
(ii) Find the eccentricity, co-ordinates of foci, length of latus rectum and equations of
directries of the ellipse.
9x
2
+ 16y' - 36x + 32y - 92 = O.
OR
(B) (i) Find the intercepts of the plane 4x + 3y ,L 2z + 2 - 0 on the co-ordinate axes.
(ii) Write Boolean function to realize the full adder and draw the corresponding logic
diagram.
FirstRanker.com - FirstRanker's Choice
This post was last modified on 03 May 2020