Download OU B.Pharma 1st Year 2012 2654 Mathematics Question Paper

Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2012 2654 Mathematics Previous Question Paper

Rill 11111111 1111
./V
Code No. . 2654
FACULTY OF PHARMACY
B. Pharmacy 1 Year (Suppi.) Examination, Oct./Nov. 2012
MATHEMATICS
Time: 3 Hours] [Max. Marks: 70
Note : Answer all questions.
All questions carry equal marks.
If
log x log y log
Z
1. a) i)

then show that xaybzc =
b-c c-a a-b
ii) Prove that sin
e (27c)
+ log
e 5
1- tan
g
(
31?
=
1

3 6 4 ) 2
OR
14
-
1
4 REED-v
?Lin, ? 4,12 E
cx

gardIDIP
A
Ph41
41
1
4440
b)
a
4
b
3

If
log a logb logc
then find the value of ? ?
1 2 5 c'
a
a sin 0 + b cos 0
ii) If tan 0 = ?
b '
find
a sine -b cos0
2. a) i) Find the derivative of the function
Jsin
.
ii) If f(x) = x
2
sin(1/x) when x# 0 and f(0) = 0, show that f is derivable for
every value of x but the derivative b not continuous for x = 0.
OR
b) i) Find the extreme values of f(x) = 5x
6
+ 18x
5
+ 15x
4
- 10.
ii) If u
au
ax + 6y + 8z
2
and au a2u 0 , find the value of a.
ax ay az
2

(This paper contains 2 pages) 1 P.T.O.
FirstRanker.com - FirstRanker's Choice
Rill 11111111 1111
./V
Code No. . 2654
FACULTY OF PHARMACY
B. Pharmacy 1 Year (Suppi.) Examination, Oct./Nov. 2012
MATHEMATICS
Time: 3 Hours] [Max. Marks: 70
Note : Answer all questions.
All questions carry equal marks.
If
log x log y log
Z
1. a) i)

then show that xaybzc =
b-c c-a a-b
ii) Prove that sin
e (27c)
+ log
e 5
1- tan
g
(
31?
=
1

3 6 4 ) 2
OR
14
-
1
4 REED-v
?Lin, ? 4,12 E
cx

gardIDIP
A
Ph41
41
1
4440
b)
a
4
b
3

If
log a logb logc
then find the value of ? ?
1 2 5 c'
a
a sin 0 + b cos 0
ii) If tan 0 = ?
b '
find
a sine -b cos0
2. a) i) Find the derivative of the function
Jsin
.
ii) If f(x) = x
2
sin(1/x) when x# 0 and f(0) = 0, show that f is derivable for
every value of x but the derivative b not continuous for x = 0.
OR
b) i) Find the extreme values of f(x) = 5x
6
+ 18x
5
+ 15x
4
- 10.
ii) If u
au
ax + 6y + 8z
2
and au a2u 0 , find the value of a.
ax ay az
2

(This paper contains 2 pages) 1 P.T.O.
Code N620 1454 MEM
3. a) i) Evaluate I J
a
g
2
dx
r
1+ x log x
e
x
dx. ii) Evaluate
x
OR
Evaluate j
rsin (log x)
dx
x
b
)
ii) Evaluate
x
2
+2x+5
(x + 2)(x - 1)(3x - 1)
dx
3 - 3 4
4. a) i) Define rank of the matrix. Find the rank of the matrix A = 2 - 3 4
0 - 1 1
iii It A=
0 1 2
1 2 3
3 1 3
OR
find A
-1
.

b) i) Solve, with the help of matrices, the simultaneousequations x y + z = 3;
x + 2y + 3z = 4; x + 4y + 9z = 6.
ii) By using the Gauss elimination method, solve the system of equations
2x + y + 4z = z; x + 3y - 2z = 7; 5x + 3y - 5z = -8.
5. a) ') Find the equation of the straight line passing through the point (-2, 1) and
parallel to 4x - 7y + 3 = 0.
) Derive the equations of straight line and explain the equation y = mx + c.
How do you determine m. Whatis the important of m and c in biological
data interpretation.
OR
b) i) Explain about various linear and non-linear graphs and their importance in
representing biological data and their comparison.
ii) Find the equation of the circle passing through the point (3, -4) and
concentric with x
2
+ y
2
+ 4x - 2y + 1 = 0.
2
1,200
FirstRanker.com - FirstRanker's Choice

This post was last modified on 03 May 2020