Download OU B.Pharma 1st Year 2014 7204 Mathematics Question Paper

Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2014 7204 Mathematics Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

PHARMACY,HYD
Code No. 7204 / M
FACULTY OF PHARMACY
B. Pharmacy I - Year (Main) Examination, June 2014
Subject : Mathematics
Time : 3 hours Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Prove that
7
5
log
3
7
log 2
7
5
log 3
5
3
log 2 = + + . 7
ii) If( ) 10000 ) 034 . 0 ( 4 . 3 = =
y x
find the value of
y x
1 1
- . 7
OR
b) i) If tan
2
1
= A and tan
3
1
= B what is the value of A + B? 7
ii) If
P
c b a
3
2 log
6
2 log
4
2 log
= = and a
3
b
2
c = 1 find the value of P. 7
2 a) i) Find the derivative of secx using first principle. 7
ii) Find the derivative of
b ax
e
+
. 7
OR
b) i) If y = ae
x
+ be
-x
find
dx
dy
and
2
2
dx
y d
. 7
ii) Find the derivative of x
1
sin
-
. 7
3 a) i) Evaluate
( )
dx
x
x
?
+
3
log 1
7
ii)
( )
?
+ + 2 3 2
1
x x
7
OR
b) i) Evaluate
?
+
dx
x cos 4 5
1
7
ii) Evaluate dx
x x
x
1
1 2
2 ?
+ +
+
7
4 a) i)
?
?
?
?
?
?
-
=
5 3
0 2
A show that A
2
+ 3A  10I = 0 7
ii) Show that ) )( )( (
1
1
1
2
2
2
a c c b b a
c c
b b
a a
- - - = 7
OR
&..2
FirstRanker.com - FirstRanker's Choice
PHARMACY,HYD
Code No. 7204 / M
FACULTY OF PHARMACY
B. Pharmacy I - Year (Main) Examination, June 2014
Subject : Mathematics
Time : 3 hours Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Prove that
7
5
log
3
7
log 2
7
5
log 3
5
3
log 2 = + + . 7
ii) If( ) 10000 ) 034 . 0 ( 4 . 3 = =
y x
find the value of
y x
1 1
- . 7
OR
b) i) If tan
2
1
= A and tan
3
1
= B what is the value of A + B? 7
ii) If
P
c b a
3
2 log
6
2 log
4
2 log
= = and a
3
b
2
c = 1 find the value of P. 7
2 a) i) Find the derivative of secx using first principle. 7
ii) Find the derivative of
b ax
e
+
. 7
OR
b) i) If y = ae
x
+ be
-x
find
dx
dy
and
2
2
dx
y d
. 7
ii) Find the derivative of x
1
sin
-
. 7
3 a) i) Evaluate
( )
dx
x
x
?
+
3
log 1
7
ii)
( )
?
+ + 2 3 2
1
x x
7
OR
b) i) Evaluate
?
+
dx
x cos 4 5
1
7
ii) Evaluate dx
x x
x
1
1 2
2 ?
+ +
+
7
4 a) i)
?
?
?
?
?
?
-
=
5 3
0 2
A show that A
2
+ 3A  10I = 0 7
ii) Show that ) )( )( (
1
1
1
2
2
2
a c c b b a
c c
b b
a a
- - - = 7
OR
&..2
PHARMACY,HYD
Code No. 7204 / M
- 2 -
b) i) Solve using Gauss-Jordan method x + y + z = 9, 2x + 5y + 7z = 52 and
2x + y  z = 0. 7
ii) Find the rank of the matrix
?
?
?
?
?
?
-
-
3 1 2
4 0 1
. 7
5 a) i) Find the equation of the circle which passes through (6, 5), (4, 1) and whose
centre lies on the line 4x + 3y  24 = 0. 7
ii) Find the equation of the line passing through (1, -6) and having intercepts
whose product is 1. 7
OR
b) i) Show that the following points lie on a line and find its equation
(5, 5), (-5, 1), (10, 7). 7
ii) Find the circle which posses through (1, 2), (3, -4) and (5, -6). 7
******
FirstRanker.com - FirstRanker's Choice

This post was last modified on 03 May 2020

whatsapp