Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2017 1063 Mathematics Previous Question Paper
Code No. 1063
FACULTY
B. Pharmacy I ? Year (Suppl.) Examination, November 2017
Subject: Mathematics
Time: 3 Hrs Max.Marks: 70
Note: Answer all questions. All questions carry equal marks.
1 a) i) Prove that 2 lo
3
5
+ 3 lo
5
7
+ 2 lo
7
3
= lo
5
7
.
ii) If
lo a
1
=
lo b
2
=
lo c
5
find the value of
4 3
a b
2
c
.
OR
b) i) If tan A =
1
2
and tan B =
1
3
find the value of A + B.
ii) Show that Sin A. Sin (60 + A) Sin (60 ? A) =
1
4
Sin 3A.
2 a) a) i) Find the derivative of Sin x usin first principle.
ii) Find all points of maxima and minima of f(x) = 2x
3
? 21x
2
+ 36x 20.
OR
b) i) If u = Sin
1
? ?
? ?
? ?
? ?
2 2
x + y
x + y
show that x
?
?
u
x
+ y
?
?
u
y
= tan u.
ii) If y = ae
x
+ be
x
find
dy
dx
and
2
d y
2
dx
.
3 a) i) Evaluate
?
3x + 7
2
3x +14x 5
dx.
ii) Evaluate
?
dx
4 + 5 Sin x
dx.
OR
b) i) Evaluate
?
4
(lo x)
x
dx.
ii) Evaluate
?
dx
2
25 16x
.
FirstRanker.com - FirstRanker's Choice
.
Code No. 1063
FACULTY
B. Pharmacy I ? Year (Suppl.) Examination, November 2017
Subject: Mathematics
Time: 3 Hrs Max.Marks: 70
Note: Answer all questions. All questions carry equal marks.
1 a) i) Prove that 2 lo
3
5
+ 3 lo
5
7
+ 2 lo
7
3
= lo
5
7
.
ii) If
lo a
1
=
lo b
2
=
lo c
5
find the value of
4 3
a b
2
c
.
OR
b) i) If tan A =
1
2
and tan B =
1
3
find the value of A + B.
ii) Show that Sin A. Sin (60 + A) Sin (60 ? A) =
1
4
Sin 3A.
2 a) a) i) Find the derivative of Sin x usin first principle.
ii) Find all points of maxima and minima of f(x) = 2x
3
? 21x
2
+ 36x 20.
OR
b) i) If u = Sin
1
? ?
? ?
? ?
? ?
2 2
x + y
x + y
show that x
?
?
u
x
+ y
?
?
u
y
= tan u.
ii) If y = ae
x
+ be
x
find
dy
dx
and
2
d y
2
dx
.
3 a) i) Evaluate
?
3x + 7
2
3x +14x 5
dx.
ii) Evaluate
?
dx
4 + 5 Sin x
dx.
OR
b) i) Evaluate
?
4
(lo x)
x
dx.
ii) Evaluate
?
dx
2
25 16x
.
.
Code No. 1063
2 4 a) i) Show that
? ?
? ?
? ?
? ?
? ?
? ?
2
1 a a
2
1 b b
2
1 c c
= (a ? b) (b ? c) (c ? a)
ii) If A =
? ?
? ?
? ?
? ?
? ?
2 0 3
6 2 1
3 1 4
find A
1
.
OR
b) i) Solve x + 4y ? 2z = 3, 3x + y + 5z = 7, 2x + 3y + z = 5 by auss elimination
method.
ii) Find the rank of matrix A =
? ?
? ?
? ?
? ?
? ?
2 1 3
3 2 1
4 5 5
.
5 a) i) Define linear and non linear raphs with an example.
ii) Find the equation of the line passin thrh (1, 1) and perpendicular to
3x ? 4y = 6.
OR
b) i) Find the centre and radius of the circle x
2
+ y
2
+ 4x + 6y + 4 = 0.
ii) Show that the followin points lie on a line and find its equation
(5,5), ( 5, 1) and (10, 7).
****
FirstRanker.com - FirstRanker's Choice
This post was last modified on 03 May 2020