PTU B.Tech CSE 1st Semester May 2019 75362 MATHEMATICS I Question Papers

PTU Punjab Technical University B-Tech May? 2019 Question Papers 1st Semester May Computer Science Engineering (CSE)

www.FirstRanker.com
www.FirstRanker.com
Roll No.
Total No. of Pages : 03
Total No. of Questions : 18
B.Tech. (CSE/IT) (2018 Batch) (Sem.?1)
MATHEMATICS-I
Subject Code : BTAM-104-18
M.Code : 75362
Time : 3 Hrs. Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :
1.
SECTION-A is COMPULSORY consisting of TEN questions carrying T WO marks
each.
2.
SECTION - B & C have FOUR questions each.
3.
Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4.
Select atleast T WO questions EACH from SECTION - B & C.


SECTION-A
1)
Can Rolle's theorem be applied to the function f (x) = 2 + (x ? 1)2/3, x [0, 2].
2)
Define beta function.
x cos x sin x
3)
Evaluate lim

2
x0
x sin x
x 3 2 y x 0
7

4)
Find the values of x, y, z, a which satisfy the relation



.
z 1
4a 6
3
2a



1 1
5)
Find adjoint of


www.FirstRanker.com

2
0
6)
Define basis of vector spaces.
7)
Give the statement of rank nullity theorem.
8)
Give any two properties of Eigen values.
9)
Define symmetric matrix with an example.
1 | M-75362

(S1)-2636

www.FirstRanker.com

www.FirstRanker.com
www.FirstRanker.com
2
1
10) Find sum and product of latent roots of the matrix

2 3

.

SECTION-B
11) a) Expand f (x) = sin?1x by Maclaurin's theorem.
a
x
x a

b) Evaluate lim
.
x
a
xa x a
1
1
12) a) Evaluate the integral
dx

in terms of gamma function.
4
0
1 x

b) Find maxima of f (x, y) = 2 (x2 ? y2) ? x4 + y4.
1 a
1
1

1
1
1
13) a) Prove that
1 1 b
1 abc 1


.

a
b
c
1
1 1 c

b) Solve the equations x +y + z = 1, x +2y + 3z = 6, x + 3y + 4z = 6 using Cramer's rule.
14) a) Are the vectors (2, 1, 1), (2, 0, ?1), (4, 2, 1) linearly dependent.
5
3
7



b) Find the rank o www.FirstRanker.com
f the matrix : 3 26
2


7
2 10



SECTION-C
2
0
1



15) Show that the matrix 5
1
0 satisfies the equation A3 ? 6A2 + 11A ? I = 0.


0
1
3


2 | M-75362

(S1)-2636

www.FirstRanker.com

www.FirstRanker.com
www.FirstRanker.com
x

x y
16) Let T : R3 R2 be the linear transformation defined by T y
, then find the



x z


z

matrix representation of T w.r.t. the ordered basis X = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}T in R3
and Y = {(1, 0), (0, 1)}T in R2.
4
2
1


17) a) Is the matrix 6
3 4 orthogonal ?


2
1 0


1
2
3



b) Write the matrix 4
5
6 as the sum of symmetric and skew symmetric matrices.


7
8
9


1

2
2



18) Reduce the matrix
1
2
1 to the diagonal form.


1

1
0







www.FirstRanker.com



NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any
page of Answer Sheet will lead to UMC against the Student.
3 | M-75362

(S1)-2636

www.FirstRanker.com

This post was last modified on 04 November 2019