Download MU-(University of Mumbai or University of Bombay) MCA (Master of Computer Application) 2019 May 1st Sem 55804 Discrete Mathematics Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
67799 Page 1 of 2
Duration 3 hours Total 100 marks
N.B: 1) Question No. 1 is compulsory.
2) Attempt any four out of remaining six questions.
3) Figures to the right indicate full marks.
1. (a) Let A={3,5,9,15,24,45} and relation R be defined on B by xRy if
and only if
?x divides y?. Show that R is a partial order relation
1.Draw the diagraph and Hasse diagram of R
2. Determine all minimal & all maximal elements.
3. find all least and greatest elements.
4. Give upper bounds and LUB of A={3,5)
5. Give all lower bounds and the GLB = {15,45}
(10)
(b) (i) Establish the following result using truth tables.
(P ^ Q) ?(?RvQ) v P
(05)
(ii) What is the solution of the recurrence relation an = an-1 + 2an-2,
with initial condition a0= 2, a1 = 7
(05)
2. (a) (i)
(ii)
Write converse , inverse and contra positive of the following
statement.
? If weather will not be good then I will not travel.?
Obtain the disjunctive normal form of (P->Q)^(?P^Q)
(05)
(05)
(b) (i)
(ii)
Find ?an where an = n
2
+ n+ 1 where ? denotes forward
difference.
For the set A = {a,b,c} give all the permutations of A. Show that
the set of all permutations of A is a group under the composition
operation.
(05)
(05)
3. (a) Obtain the recurrence relation and initial conditions to find the
maximum number of regions defined by n lines in a plane. Assume
that the lines are not parallel and lines not intersecting at one point
when n>2. Solve the recurrence relation.
(10)
(b) (i)
(ii)
Draw the transition state diagram of the finite state machine
M=(S,I,O,?,?,s0,) given in the table
? ?
a b a b
S0
S1
S2
S3
S1 S2
S3 S1
S1 S0
S0 S2
x y
y z
z x
z x
Explain with suitable example:- (1) Predicate (2) Proposition
(05)
(05)
4. (a) Determine whether the relation R on a set A is reflective
,irreflective, asymmetric, antisymmetric or transitive.
A = set of all positive integers, aRb iff a?b+1
(10)
Paper / Subject Code: 55804 / Discrete Mathematics
8ABC7E38817571ADA7806931AD0F5840
FirstRanker.com - FirstRanker's Choice
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
67799 Page 1 of 2
Duration 3 hours Total 100 marks
N.B: 1) Question No. 1 is compulsory.
2) Attempt any four out of remaining six questions.
3) Figures to the right indicate full marks.
1. (a) Let A={3,5,9,15,24,45} and relation R be defined on B by xRy if
and only if
?x divides y?. Show that R is a partial order relation
1.Draw the diagraph and Hasse diagram of R
2. Determine all minimal & all maximal elements.
3. find all least and greatest elements.
4. Give upper bounds and LUB of A={3,5)
5. Give all lower bounds and the GLB = {15,45}
(10)
(b) (i) Establish the following result using truth tables.
(P ^ Q) ?(?RvQ) v P
(05)
(ii) What is the solution of the recurrence relation an = an-1 + 2an-2,
with initial condition a0= 2, a1 = 7
(05)
2. (a) (i)
(ii)
Write converse , inverse and contra positive of the following
statement.
? If weather will not be good then I will not travel.?
Obtain the disjunctive normal form of (P->Q)^(?P^Q)
(05)
(05)
(b) (i)
(ii)
Find ?an where an = n
2
+ n+ 1 where ? denotes forward
difference.
For the set A = {a,b,c} give all the permutations of A. Show that
the set of all permutations of A is a group under the composition
operation.
(05)
(05)
3. (a) Obtain the recurrence relation and initial conditions to find the
maximum number of regions defined by n lines in a plane. Assume
that the lines are not parallel and lines not intersecting at one point
when n>2. Solve the recurrence relation.
(10)
(b) (i)
(ii)
Draw the transition state diagram of the finite state machine
M=(S,I,O,?,?,s0,) given in the table
? ?
a b a b
S0
S1
S2
S3
S1 S2
S3 S1
S1 S0
S0 S2
x y
y z
z x
z x
Explain with suitable example:- (1) Predicate (2) Proposition
(05)
(05)
4. (a) Determine whether the relation R on a set A is reflective
,irreflective, asymmetric, antisymmetric or transitive.
A = set of all positive integers, aRb iff a?b+1
(10)
Paper / Subject Code: 55804 / Discrete Mathematics
8ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
8ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F58408ABC7E38817571ADA7806931AD0F5840
67799 Page 2 of 2
(b) (i)
(ii)
Show by mathematical induction, that for all n ?1,
1+5+9+---------------+(4n-3) =n(2n-1)
Let G be a group. Show that the function f:G ?G defined by
f(a) = a
2
is a homomorphism iff G is abelian.
(05)
(05)
5. (a) (i)
(ii)
Let T be set of even integers. Show that the semigroups (Z,+) and
(T,+) are Isomorphic, where Z is a set of integers.
For the grammar specified below describe precisely the
language,L(G),produced. Also give the corresponding syntax
diagram for the productions of the grammar. G=(V,S,vo,| ?)
V = {v0,a,b}, S = {a,b}
v0| ?aav0 , v0|--> a, v0 | ?b
(05)
(05)
(b) (i) perform the following
i) 0111 ? 1010= ?
ii) (413)8 = (?)10
iii) 10100 ? 100= ?
iv) (1101)2 ? (1001)2 = ?
v) (49.25)10 = (?)2
(10)
6. (a) (i)
(ii)
Determine the validity of the following argument using deduction
method:
? If I study then I will pass examination . If I do not go to picnic
,then I will study. But I failed examination. Therefore , I went to
picnic?
Let G be a group and let ?a? be a fixed element of G. show that the
function fa:G ?G defined by fa(x) =axa
-1
for x?G is an
isomorphism.
(05)
(05)
(b) (i)
(ii)
Let
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
H be a parity check matrix.
Determine the group code eH: B
2
-->B
5
. How many errors will the
above group code detect.
Let A={1,2,3,4}. For the relation
R={(1,1),(1,4),(2,2),(3,3),(2,1),(4,4) find the matrix of transitive
closure by using Warshall?s algorithm.
(05)
(05)
7. (a) Show that (2,5) encoding function e:B
2
--> B
5
defined
bye(00)=00000,e(01)=01110,e(10)=10101, e(11)=11011 is a group
code.
Decode the following words with maximum likelihood technique:
i)11110 ii)10011
(10)
(b) Find the particular solution of ar+5ar-1 +6ar-2 =3r
2
. (10)
*******
Paper / Subject Code: 55804 / Discrete Mathematics
8ABC7E38817571ADA7806931AD0F5840
FirstRanker.com - FirstRanker's Choice
This post was last modified on 05 February 2020