Download SGBAU BSc 2019 Summer 1st Sem Mathematics Differential Integral Calculus Question Paper

Download SGBAU (Sant Gadge Baba Amravati university) BSc 2019 Summer (Bachelor of Science) 1st Sem Mathematics Differential Integral Calculus Previous Question Paper

AVV?l620
B.Sc. Part-I (Scmcster?I) Examination
MATHEMATICS
(Differential & Integral Calculus)
Papcr?II
Time : Threg: IIours] [Maximum Marks : 60
Note :?(1) Question No. l is compulsory. Attempt oncc.
(2) Attempt ONE question from each unit.
1. Choose the correct alternatives (1 mark each) : l()
(i) The value of lim m is :
x?>0 X
(a) 0 (b) 1
(c) so (d) None of these
(ii) Ify ?? c 3?, thcn yll is :
(a) ?2? e z? (b) 2? 6?
(c) -?2? c?? (d) Nonc ot?thcsc
(iii) The series :
3 211?1
X-?x*~+ ........ +(?l)?"????+ .........
3! (211?1)!
is the expansion of function :
(a) sin x (b) sinh x
(c) cos x (d) cosh x
' l _ . i. .
(W) .X XUI<5 represents.
(a) x0?8(c) x0?6$x(v) If f be differentiable on (a, b) and f?(x) = 0, v x e [3, b], then f(x) is :
(a) Monotonic increasing in la, b] (b) Monotonic decreasing in [11, b]
(c) Constant in [a. b] (d) None of these
(vi) For f(x) = x3; in [1, 3] then the value of ?C? by Lagrange?s mean value theorem is :
6
(a) E (b) 2
(c) 0 (d) 1
YBC??15194 1 (Could)

(vii)'l?hc area boundcd by the curve )4 = g(y): yvaxis and y = a. y = b is :
b b
(a) lde (b) dey
'd a
b 2 b ,Zd.
(c) IV d" (d) J" -?
a 4
(viii) T he functions f and g be :
(N
(X)
(b)
(c)
3- (p)
(Q)
(i) continuous in [:1. h]
(ii) derivable in (a, b) and
(iii) g'(x) ,t 0 for all x e (a, bi.
These are the hypothesis of mean value theorem by :
(a) Rolle?s (b) Lttgrangc's
(c) Cauchy?s (d) Lcibnitz
The function f(x) has the removable discontinuity if :
(8) f0?) it f(X') (b) f(X?.) = f(x ) i f(X)
(c) f(x?), f(x') do not exist (d) None of these
d
a cosh x [S t
(a) sinh x (b) ?-sinh x
(c) h sinh x I (d) ??h sinh x
UNlT?I
ll? lim l?().)=? and lim g(xium, then prove that :
X?9Xo \-*.\i?
lim iif(x)+g(x)]: lim f(x)+ lim g(x)
X?PXO X??\U \-?)\'0
= 1? + tn. 4
Prove that the function (lCllllCd by ['(x') = x: is continuous l'Ur all x e R. 3
Using de?nition of limit. ?rms that :
2
. x ?2x ?x?6
hm ?????? : l4 3
x?a3 x ~ 3
De?ne limit of a function 3rd show that the limit of a function if it exist. is
unique. 1+3
Prove that lim x2 :4; by using e-d de?nition. 3
x??2
YBC?15194 2 (C0md.)

(r)
(b)
(C)
5- (p)
(q)
(r)
(b)
(e)
7- (p)
(q)
(r)
I A(X
lf f(x)=l?:~c?1?,x?0,
= 0, , x = 0
then show that f(x) has a simple discontinuity at x = 0.
UNlT?H
Prove that if f(x) is differentiable at x = x0. then it is continuous at x = x0. Is converse
of this statement true ? Justify.
Evaluate :
2
lim (cos x)cm "
x?>0
If y = A sin mx + B cos mx, then prove that y2 + m?y = 0.
[f y = sin(m sin 'x), then show that :
(i) (l ? x?)y2 - xy. + mzy = 0
(ii) (1 ? x2)ym2 ? (2n + 1)xyml ? (n2 ? m2))/" = 0.
[1 n
~ ?hcn Prove that y 42%
If = .
y ax+b " (alx+b)n+l
Evaluate :
x?sinx
hm 3
x?>0 x
UNIT?III
State and prove Lagrangc?s mean value theorem.
Verify Cauchy mean value theorem for the functions :
f(x) = e" and g(x) = c? in [a, bl.
Expand sin x in powers of x_?, upto ?rst four terms.
2
State and prove Cauchy?s mean value theorem.
Expand 3x3 + 4x2 + 5x ? 3 about the point x = 1 by Taylor?s theorem.
Verify the Rolle?s theorem for the function :
f(x) = i"; in [0, n],
C
UNIT?IV
If u = f(x, y, z) is a homogeneous function of degree n, then show that :
au Eu 6U
x?+y??+z-??=nu
8x ay 02 '
YBC?- 15194 3
5
(C ontd.)

(b) Verify liulcr's thcorcm for u 2:13;} + Z: 3
y z x
(c) Ifu = e? (x cos y -A y sin y), thcn ?nd the value u? + u?. 3
9. (p) If-u = f(x. y) be homogcncous function of degree n then prove that :
? Bu (?u ? _ ~ _
(1) 5g are homogcncous iuncltons of degree ?n ,, l 111 x, y and
-2 ?lu ?2?
.. u u c L .
(u) x2-r?7+2.\'\?;~?4?3?;?-n(nvl)u. 4
0x' ("My Ex"
(q) If u = 3(ax + by + Cl) 7 (3,3 + y; t 7}) and a: ? b" ?- c3 ; 1. then show that :
a2 2 -
0 u 0 u 6 u
6x By 67?
x ?v4
(r) [f u=log?-?'??, x :t y, thcn proxtc thut :
x ? y
(i) xu?+yu?=3
(ii) xzuH + 2xy u? v y" u? = ?3. 3
UNIT?\?
10. (a) Prove that:
? :n-l n?i
_ 5m xcos x 11?1 . n a
[Sirl'nx cos"x dx = ~ ?-??-?+ J?smhxcosn 2x dx. 4
m + n m + n
(b) Evaluate:
2
.\ +2x c 3
I?=:~-?dx t
A 3 J
V x? + x +1
(c) Show that ?8a? is the length of an arc of thc cycloid \' -, a(t a sin t). y ~? a(l ? cos I);
0 S t S 27:. 3
11. (p) Prove that :
1
14m?? x
J?tannxdxz-~7? ?l 7
1? _1 H ?...
Hence evaluate Itan3x d3: . 4
. . x .
(q) Fmd the area bounded b) the (-ales. the curve _\ = c cosh? and thc ordmatcs .\' = 0,
c
x = a. 3
(r) Show that length of the curu- _\ ?? log sec x bcmccn the points, where x = 0 and
n _ --
x = ?1510gc(2+\/3].
3
L.)
YBC?lSl94 4 52s

This post was last modified on 10 February 2020