Download PTU. I.K. Gujral Punjab Technical University (IKGPTU) M.Tech. ECE 1st Semester 36202 ADVANCED MATHEMATICS FOR ENGINEERS Question Paper.
ARoll No. Total No. of Pages : 02
Total No. of Questions : 08
M.Tech. (ECE) (Sem.?1)
ADVANCED MATHEMATICS FOR ENGINEERS
Subject Code : EC-501
M.Code : 36202
Time : 3 Hrs. Max. Marks : 100
INSTRUCTION TO CANDIDATES :
1. Attempt any FIVE questions out of EIGHT questions.
2. Each question carries TWENTY marks.
Q1. a) Find the fourier sine and cosine transforms of f (x) = e
?ax
(a > 0). (10)
b) If F (f (x)) = F (s) then show that ( ( )) ( ) ( )
n
n n
n
d
F x f x i F s
dx
? ? . (10)
Q2. a) Find the Z-transform of sin
2
k ? ? ?
? ?
? ?
? ?
. (10)
b) If Z (f (k)) = F(z) then show that
1
( )
( ))
1
k
n
F z
Z f n
z
? ? ? ?
? ?
?
? ?
?
? ?
?
(10)
Q3. Apply Gauss-Seidel?s iteration method to solve the equations
20x + y ? 2z = 17; 3x + 20y ? z = ?18; 2x ? 3y + 20z = 25 (20)
Q4. Show that the transformation
1
1
z
w i
z
?
?
?
transform the circle | z | = 1 onto the real axis of
the w ? plane and the interior of the circle into the upper half of the w ? plane. (20)
Q5. Define Euler?s equation and find the shape of the curve of the given perimeter enclosing
maximum area. (20)
Q6. Discuss Hamilton?s principle and drive Lagrange?s equation. (20)
FirstRanker.com - FirstRanker's Choice
1 | M-36202 (S9)-500
ARoll No. Total No. of Pages : 02
Total No. of Questions : 08
M.Tech. (ECE) (Sem.?1)
ADVANCED MATHEMATICS FOR ENGINEERS
Subject Code : EC-501
M.Code : 36202
Time : 3 Hrs. Max. Marks : 100
INSTRUCTION TO CANDIDATES :
1. Attempt any FIVE questions out of EIGHT questions.
2. Each question carries TWENTY marks.
Q1. a) Find the fourier sine and cosine transforms of f (x) = e
?ax
(a > 0). (10)
b) If F (f (x)) = F (s) then show that ( ( )) ( ) ( )
n
n n
n
d
F x f x i F s
dx
? ? . (10)
Q2. a) Find the Z-transform of sin
2
k ? ? ?
? ?
? ?
? ?
. (10)
b) If Z (f (k)) = F(z) then show that
1
( )
( ))
1
k
n
F z
Z f n
z
? ? ? ?
? ?
?
? ?
?
? ?
?
(10)
Q3. Apply Gauss-Seidel?s iteration method to solve the equations
20x + y ? 2z = 17; 3x + 20y ? z = ?18; 2x ? 3y + 20z = 25 (20)
Q4. Show that the transformation
1
1
z
w i
z
?
?
?
transform the circle | z | = 1 onto the real axis of
the w ? plane and the interior of the circle into the upper half of the w ? plane. (20)
Q5. Define Euler?s equation and find the shape of the curve of the given perimeter enclosing
maximum area. (20)
Q6. Discuss Hamilton?s principle and drive Lagrange?s equation. (20)
2 | M-36202 (S9)-500
Q7. State Parseval?s identity for fourier transforms. Prove that
2 2 2 2
0
( )( ) 2 ( )
dt
a t b t ab a b
?
?
?
? ? ?
?
(20)
Q8 .Determine the largest eigen value and the corresponding eigen vector of the matrix
2 1 0
1 2 1
0 1 2
A
? ? ?
? ?
? ? ?
? ?
? ? ?
? ?
(20)
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any
page of Answer Sheet will lead to UMC against the Student.
FirstRanker.com - FirstRanker's Choice
This post was last modified on 13 December 2019