Download OU B.Sc 5th Year 2019 B.Sc Maths Question Bank Question Paper

Download OU (Osmania University) B.Sc Fifth Year (5th Year) B.Sc Maths Question Bank Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

21.
22.
23.
24.
26.
27.
Unit-lll
Findthepointsofintermctionoftheline
l<:+5)?
s?i?1'
withthecoiiieoid
12a?-l7y2+n?=1.
Findtheequationstothetangentplanesto
r?-a?-=?+21=0.
whichpassthroughtheline.
71-Gy+9=3.:=3.
Obtainthetangentplanestotheellipsoid
1
u
Iu||
i-
+
ada
?EH.
+
?u
whichareparalleltothepliuie
lr+my+n:=0.
Showthattheplane3r+l2y?G:?l7=0touchestheconicoid3.1-2?6y?+9:2+l7=U.
and?ndthepointofcontact.
.Findtheequationstotlietangentpliuiestothesurface
i1?may?+1=?+l3=o.
paralleltothepliuie
~lr+20y?2l:=0.
Findtheirpointsofcontactalso.
Findthelocusoftheperpendicularsfromtheorigintothetangentplanestothesnr?ice
whichcutoflfromitsaxesinterceptsthesumofwhosereciprocalsisequaltoaconstantl/k.
llthesectionoftheenvelopingconeoftheellipsoid
1.2y::2l
n2+b2+c7_I
whosevertexisPbytheplanez=0isarectangularhyperbola.showthatthelocusofPis

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

21.
22.
23.
24.
26.
27.
Unit-lll
Findthepointsofintermctionoftheline
l<:+5)?
s?i?1'
withthecoiiieoid
12a?-l7y2+n?=1.
Findtheequationstothetangentplanesto
r?-a?-=?+21=0.
whichpassthroughtheline.
71-Gy+9=3.:=3.
Obtainthetangentplanestotheellipsoid
1
u
Iu||
i-
+
ada
?EH.
+
?u
whichareparalleltothepliuie
lr+my+n:=0.
Showthattheplane3r+l2y?G:?l7=0touchestheconicoid3.1-2?6y?+9:2+l7=U.
and?ndthepointofcontact.
.Findtheequationstotlietangentpliuiestothesurface
i1?may?+1=?+l3=o.
paralleltothepliuie
~lr+20y?2l:=0.
Findtheirpointsofcontactalso.
Findthelocusoftheperpendicularsfromtheorigintothetangentplanestothesnr?ice
whichcutoflfromitsaxesinterceptsthesumofwhosereciprocalsisequaltoaconstantl/k.
llthesectionoftheenvelopingconeoftheellipsoid
1.2y::2l
n2+b2+c7_I
whosevertexisPbytheplanez=0isarectangularhyperbola.showthatthelocusofPis

28.Findthelocusofpointsfromwhichthreemutuallyperpendiculartangentlinescanhedravni
totheconieoidor?+by?+cz?=l.
29.P(l.3.2)isapointontheconicoid.
1?-2y?+s=?+s=o.
Findthelocusoi?themid-pointsofchordsdrawnparalleltoOP.
FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

21.
22.
23.
24.
26.
27.
Unit-lll
Findthepointsofintermctionoftheline
l<:+5)?
s?i?1'
withthecoiiieoid
12a?-l7y2+n?=1.
Findtheequationstothetangentplanesto
r?-a?-=?+21=0.
whichpassthroughtheline.
71-Gy+9=3.:=3.
Obtainthetangentplanestotheellipsoid
1
u
Iu||
i-
+
ada
?EH.
+
?u
whichareparalleltothepliuie
lr+my+n:=0.
Showthattheplane3r+l2y?G:?l7=0touchestheconicoid3.1-2?6y?+9:2+l7=U.
and?ndthepointofcontact.
.Findtheequationstotlietangentpliuiestothesurface
i1?may?+1=?+l3=o.
paralleltothepliuie
~lr+20y?2l:=0.
Findtheirpointsofcontactalso.
Findthelocusoftheperpendicularsfromtheorigintothetangentplanestothesnr?ice
whichcutoflfromitsaxesinterceptsthesumofwhosereciprocalsisequaltoaconstantl/k.
llthesectionoftheenvelopingconeoftheellipsoid
1.2y::2l
n2+b2+c7_I
whosevertexisPbytheplanez=0isarectangularhyperbola.showthatthelocusofPis

28.Findthelocusofpointsfromwhichthreemutuallyperpendiculartangentlinescanhedravni
totheconieoidor?+by?+cz?=l.
29.P(l.3.2)isapointontheconicoid.
1?-2y?+s=?+s=o.
Findthelocusoi?themid-pointsofchordsdrawnparalleltoOP.
2.14.1PracticalsQuestionBank
IntegralCalculus
Unit-I
l.LetR=[-3.3]x[-2.2].Withoutexplicitlyevaluatinganyiteratedintegrals.detenninethe
valueof
f/(1%.mm
n
2.Integratethefunctionf(x.y)=31yovertheregionboundedbyy=3213midy=

l0.
l3.
.f(:.y.:)=2:?y+z:ll"istheregionhoundedbythecylinder:=
.Integratethefunctionf(x.y)=1+yovertheregionhoundedbyz+y=2andy?-2y-.'r=0.
.Evaluatefforyrlzl.whereDistheregionboundedby.r=y?andy=1".
.Evaluateffo?zd/i.whereDisthetriangularregionwithvertices(0.0).(l.0)and(1.1).
.Evaluateffbilyrl/l.whereDistheregionboundedbyry?=1.y=r.r=0andy=3.
.EvaluateffD(.-r?2y)d?l.whereDistheregionboundedb_vy=:2+2andy=212?2.
.EvaluateffD(r"?+y')d/l.whereDistheregioninthe?rstquadrantboundedbyy=4r.y=3:
and.'ry=3.
.Considertheintegral
22:
/(2:+l)rlyd.r
oa
a)Evaluatethisintegral.
b)Sketchtheregionofintegratiou.
c)Writeanequivalentiteratedintegralwiththeorderofintegrationreverse.Evaluatethis
newintegralandcheek_vouransweragreeswithpart(a).
Findthevolumeoftheregionunderthegraphof
!(1-u)=2?|1|?|y|
andabovethery-plmre
Unit-II
IntegratethefollowingovertheindicatrxlregionW.
y?.thery-plane.the
planes1=0.:=l.l!?/&.y=2.
.j(z.y.:)=y:Wistheregionboundedbytheplane1+y+z=2.thecylinder12+:2=l
andy=0.
[(r.y.:)=8ryzzWistheregionhoundedbythecylindery=r2.theplaney+:=9and
thezy-plane.

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

21.
22.
23.
24.
26.
27.
Unit-lll
Findthepointsofintermctionoftheline
l<:+5)?
s?i?1'
withthecoiiieoid
12a?-l7y2+n?=1.
Findtheequationstothetangentplanesto
r?-a?-=?+21=0.
whichpassthroughtheline.
71-Gy+9=3.:=3.
Obtainthetangentplanestotheellipsoid
1
u
Iu||
i-
+
ada
?EH.
+
?u
whichareparalleltothepliuie
lr+my+n:=0.
Showthattheplane3r+l2y?G:?l7=0touchestheconicoid3.1-2?6y?+9:2+l7=U.
and?ndthepointofcontact.
.Findtheequationstotlietangentpliuiestothesurface
i1?may?+1=?+l3=o.
paralleltothepliuie
~lr+20y?2l:=0.
Findtheirpointsofcontactalso.
Findthelocusoftheperpendicularsfromtheorigintothetangentplanestothesnr?ice
whichcutoflfromitsaxesinterceptsthesumofwhosereciprocalsisequaltoaconstantl/k.
llthesectionoftheenvelopingconeoftheellipsoid
1.2y::2l
n2+b2+c7_I
whosevertexisPbytheplanez=0isarectangularhyperbola.showthatthelocusofPis

28.Findthelocusofpointsfromwhichthreemutuallyperpendiculartangentlinescanhedravni
totheconieoidor?+by?+cz?=l.
29.P(l.3.2)isapointontheconicoid.
1?-2y?+s=?+s=o.
Findthelocusoi?themid-pointsofchordsdrawnparalleltoOP.
2.14.1PracticalsQuestionBank
IntegralCalculus
Unit-I
l.LetR=[-3.3]x[-2.2].Withoutexplicitlyevaluatinganyiteratedintegrals.detenninethe
valueof
f/(1%.mm
n
2.Integratethefunctionf(x.y)=31yovertheregionboundedbyy=3213midy=

l0.
l3.
.f(:.y.:)=2:?y+z:ll"istheregionhoundedbythecylinder:=
.Integratethefunctionf(x.y)=1+yovertheregionhoundedbyz+y=2andy?-2y-.'r=0.
.Evaluatefforyrlzl.whereDistheregionboundedby.r=y?andy=1".
.Evaluateffo?zd/i.whereDisthetriangularregionwithvertices(0.0).(l.0)and(1.1).
.Evaluateffbilyrl/l.whereDistheregionboundedbyry?=1.y=r.r=0andy=3.
.EvaluateffD(.-r?2y)d?l.whereDistheregionboundedb_vy=:2+2andy=212?2.
.EvaluateffD(r"?+y')d/l.whereDistheregioninthe?rstquadrantboundedbyy=4r.y=3:
and.'ry=3.
.Considertheintegral
22:
/(2:+l)rlyd.r
oa
a)Evaluatethisintegral.
b)Sketchtheregionofintegratiou.
c)Writeanequivalentiteratedintegralwiththeorderofintegrationreverse.Evaluatethis
newintegralandcheek_vouransweragreeswithpart(a).
Findthevolumeoftheregionunderthegraphof
!(1-u)=2?|1|?|y|
andabovethery-plmre
Unit-II
IntegratethefollowingovertheindicatrxlregionW.
y?.thery-plane.the
planes1=0.:=l.l!?/&.y=2.
.j(z.y.:)=y:Wistheregionboundedbytheplane1+y+z=2.thecylinder12+:2=l
andy=0.
[(r.y.:)=8ryzzWistheregionhoundedbythecylindery=r2.theplaney+:=9and
thezy-plane.

l7.
l9.
20.
2
r~
22.
23.
24.
25.
.f(.'r.y.:)=z:Wistheregioninthe?rstoctantboundvxlbythecylindery:+z?=9andthe
planesy=1.:=0andz=0.
.f(r.y.z)=l?s?:Wisthetetrahedronwithvertiees(0.0.0).(1.0.0).(0.2.0)and(0.0.3).
.j(r.y.:)=3r;II"istheregioninthe?rstoctantboundedby:.=r2+5/2.:=0.y=0and
z=-l.
j(x.y.z)=r+y:Wistheregionboundedbythecylinderr2+3:2=9andtheplaney=0.
r+y=3.
.[(1.y.z)=z:II?istheregionboundedbyz=0.I?:+4y?=-lturdz=1+2.
Unit-III
IntegratethefollowingovertheindicatedregionW.
](.-r.y.:)=-l.r+yzWistheregionboundedby1'=y?.y=:..r=yaadz=0.
j(z.y.z)=.r:Wistheregioninthe?rstoctantboundedbyz=r2+2f.z=G
?
:2
?
y?.
r=0arrdy=0.
LetT(u.r')=(3ll.?v)
.WriteT(u.u)asAIt;lforasuitablematrixA.
DeztribetheimageD=T(D?).whereD?istheunitsquare[0.1]x[0.1].
f/?li?
1?2y
D
whereDistheregioninR2mrelosetlbytheIirresy=

y=0and
I+
y=I.
Deterrrrinethevalueof
Evaluate
(2.r+y?3)?
tld.
(2y?:r+6)?Iy
whereDisthesquarewithwrtices(0.0).(2.l).(3.-l)iurd(l.-2).(Hint:FirstdtetchDand
?ndtheequationsofitssides)
Evaluate
f]cw?rz+yzM/l.
0
whereDistheshadedregioninthefollowing?gure-l.

FirstRanker.com-FirstRanker'sChoice
2.12.1PracticalsQuestionBank
LinearAlgebra
Unit-I
I
'2?l
l.LetHbethesetofallvectorsoftheforniFindavectorvin1R3suchthatH=
l4.
.Letv;=
.ThesetB={l?l7.!?12.2?1+l2}isabasisforP2.
.Thevmtorv;=I_:li

v7=
iii
Span{v).\\'h_vdoesthis?IOW'thatHisasubspaceoflRJ?
.i.?vi?lhCas?quadrantinthery-pliuie:that

m
v=
{lS]=1
3
0.51
z
o}
a.IfuandvareinV.isu+vinV?Why?
b.Findaspeci?cvectoruinViuidaspeci?cscalarcsuch
l?2
?--2andv;=l7

Determineif{vbv?isabasicforR?.ls{vbv?a
3?9
basislorlll2'.?
.ThesctB={l+12.!+12.1+2t+12}isabasisForP1.Fiiidthecoordinatevectorof
p(l)=l+~lf+7|?relativetoB.
Findthecoordinatewctorof
p(|)=1+31-6i?relativetoB.
l_?

v;=[__3I1spmtlllzbutdonotfomiabasis.Find
.l...twodifferentwaystoexpressiasalinearcombinationofv?.v;.v;.
.Findthe(liineiisioiioftliesubspaceofallwctorsin1R3whose?rstandthirdentriesareequal.
...21?2?3
.FindthediineiisonofthesubspaceHofIRspannedby_5,w.l5.
.LetHbeanll-(llIllCllSlOllIllsubspaceo!?anll-tlllll0ll?0ll?lvectorqmceV.ShowthatH=V.
.ExplainwhythespacePol?allpolynomialsismiin?nitediiiietisioiialspace.
Unit-II
.Ifa-lx7iiiatrixAhasrank3.?iuldiiii.\'ulA.dimRowA.iiiidniiikAT.
.lla7x5niatrixAhasrank2.?nddiiii.\'iilA.diinRowA.niidmiikAT.
.lftheiiullspaeeofan8x5inatrixAisZl-diiueiiiional.whatisthedimensionoftherowspace
ofA?
IfAisa3x7matrix.whatisthesniallmtpossiblediniensioiiof.\'iilA?

20.
2L
22.
23.
24.
25.
.Letu=l?

FindvinR?suchthatl
l?3~l
=T
2438]uv.
.lfAisa7X5matrix.whatisthelargestpossiblerankofA?lfAisa5x7matrix.whatis
thelargestpossiblerankofA?Explain_vouranswers.
.Withoutcalculations.listrankAanddiin.\'ulA
26?6636
A=?2?36-30?6
-l9?l293l2'
i-23633?(ii
.UseapropertyofdcteriiiinantstoshowthatAandAThavethesamecharacteristicpolynomial.
.Findthecharacteristicequationof
if;?Z?0
Azlo054]
000i
Findthecharacteristicpolynomialandtherealeigenvaluesofl
iii-FH-
$3111i
._.-QIOQNI
b?
Unit-lll
5712
2ain=i23l
LetB={bhbmba}andD={dhdg}bebasesforvectorspacesVandW.respectively.
LetT:V->ll"benlineartransformationwiththepropertythatT(h|)=3di?5th.
T(b;)=-d|+6d-,-.T(b;)=Jdq.FindthematrixforTrelativetoBandD.
LetA=PDP"andcomputeA?.whereI?=[
Let?D={dbd?andB={bpbg}bebasesforvectorqiiicesVandll".respectively.Let
T:V?>WbealineartransfonnationwiththepropertythatT(d|)=3b;?13b1,T(d;)=
-2b|+5b,.FindthematrixforTrelativetoBand?D.
LetB={b|.bg.b;)beabassforavectorspaceVandletT:V?>R7bealinear
transformationwiththepropertythat
_2:1?3r;+1,
T(.r|b|+13b;+.'r,b;)-_2rl+51.?
FindthematrixforTrelativetoBandthestandardbasisforR2.
LetT:P;?>P;bethetmnsformationthatmapsapolynomialp(t)intothepolynomial
(f+3)P(')-
a.Findtheiniageofp(t)=3-2t+l?.

26.
27.
28.
29.
30.
b.ShowthatTisalineartransformation.
c.FindthematrixforTrelativetothebases{LL17}and{LLFJJ}.
AssumethemappingT:1?;?>ll?;de?nedbyT(?Q+?|l+l|;lz)=3ao+(5no?2zii)l+(~lrii+01)!?
islinear.FindthematrixrepresentationofTrdativetothebasisB=(l.Li?).
P(-1)
9(3)
PU)J
9(0)
a.ShowthatTisalineartransformation.
b.FindthematrixforTrelativetothebases(l,t.t?.t?)forP;andthestandardbasisfor
R4.
De?iieT2P;?>R?byT(p)=l
LetAbea2x2matrixwitheigenvalues-3and-landcorrespondingeigenvcctorsvi=
l_:1andv;=li

Letx(t)bethepositionofaparticleattimet.Solvetheinitialvalue
problemx'=Ax.x(0)=[g

Constructthegeneralsolutionofx?=Ax.A=i

_?

1g1
ComputetheorthogonalprojectionoflQ1ontothelinethroughl_;1andtheorigin.

2.13.1PracticalsQuestionBank
r~
ll.
SolidGeometry
Unit-l
.FindthecquationofthespherethroughthefourpointsH.?l.2).(0.?2.3).(1.?5.?1).(2.0.l).
.Findtheequationofthespherethroughthe[ourpoints(0.0.0).(?a.b.c).(a.?b.c).(a.b.?r).
.Findthecentreandtheradiusofthecircle1+2y+2=15.124-yz+22-2y?4:=ll.
.Showthatthefollowingpointsaremncyclie:
(a)(s.o.2).(2.-c.o).(n-rus).(4~_9.6).
(u)(-s.s.2).(-s.2.2)(-'r.o.o).(-4.a.s).
.Findthecentresofthetwoqihenswhichtouchtheplane41+3y+=47ntthepoints(8,5.4)
andwhichto\|chthespherer?+y?+z?=1.
.Showthatthespheres
1?+y?+=?=25
1?+y?+=?-24:-40y-1s=+22s=o
touchexternallyand?ndthepointofthecontact.
.Findtheequationofthespherethatpassesthroughthetwopoints(0,3.0)_(?2,?l,?1l)and
cutsorthogonallythetwospheres
.r?+y?+:'+.r-3:-2=0.2(:?+y'+:?)+:+3y+4=0.
.Findthelimitingpointsoftheco-axalsystemofspheres
;?+y?+=?-2o?+aoy-4o=+29+,\(21-sy+4=)=0.
.Findthetquationtothetwospheresoftheco-axalsystems
:'+y?+;'-s+,\(2:+y+a=-s)=0.
whichtouchtheplane
3r+-ly=l5.
.Showthattheradicalplanesofthesphereofaco-axalsystemandofanygivenspherepass
throughaline.
Unit-H
Findtheequationoftheconewhosevertmcisthepoint(l.I.0)andwhomguidingcurveis

l4.
l6.
l8.
20.
.Thesectionofaconewhosevertu:isPandguidingcurvetheellipse13/02+yz/b:=L:=0
bytheplane.r=0isarectangularhyperbola.ShowthatthelocusofPis
r_2+y2+:7=l
a:b:'
.Findtheenvelopingconeofthesphere
.r?+y?+z?-2:+4:=
withitsvatmcat(l.l.1).
Findtheequationofthequadricconewhosevertexisattheoriginandwhichpassesthrough
thecurvegivenbytheequations
ax?+6512+0.22=1.1:+my+nz=
.Findtheequationoftheconewithvertexattheoriginanddirectioncosinesofitsgenerators
satisfyingtherelation
312?4m:+5n:=0.
Findtheequationofthecylinderwhosegeneratorsareparallelto
andwhoseguidingcurveistheellipse
12+2y2=l.:=3.
.Findtheequationoftherightcircularcylinderofmdius2whoseaxisistheline
(I-l)(=-3)
i=-2=.
2(u)2
Theaxisofarightcircularcylinderofradius2is
1'?l_y_z-3'
2'a
'1'
showthatitsequationis
|0r?+5112+13:?-l2ry?(iyz--lz.r-8.'r+30y-"u:+ss=0.
.Findtheequationofthecircularcylinderwhoseguidingcircleis
12+yz+z?9=0.r?y+z=
Obtaintheequationoftheriglicircularcylinderdescribedonthecirclethroughthethree
points(l.0.0).(0.1.0).(0.0.l)asguidingcircle.

21.
22.
23.
24.
26.
27.
Unit-lll
Findthepointsofintermctionoftheline
l<:+5)?
s?i?1'
withthecoiiieoid
12a?-l7y2+n?=1.
Findtheequationstothetangentplanesto
r?-a?-=?+21=0.
whichpassthroughtheline.
71-Gy+9=3.:=3.
Obtainthetangentplanestotheellipsoid
1
u
Iu||
i-
+
ada
?EH.
+
?u
whichareparalleltothepliuie
lr+my+n:=0.
Showthattheplane3r+l2y?G:?l7=0touchestheconicoid3.1-2?6y?+9:2+l7=U.
and?ndthepointofcontact.
.Findtheequationstotlietangentpliuiestothesurface
i1?may?+1=?+l3=o.
paralleltothepliuie
~lr+20y?2l:=0.
Findtheirpointsofcontactalso.
Findthelocusoftheperpendicularsfromtheorigintothetangentplanestothesnr?ice
whichcutoflfromitsaxesinterceptsthesumofwhosereciprocalsisequaltoaconstantl/k.
llthesectionoftheenvelopingconeoftheellipsoid
1.2y::2l
n2+b2+c7_I
whosevertexisPbytheplanez=0isarectangularhyperbola.showthatthelocusofPis

28.Findthelocusofpointsfromwhichthreemutuallyperpendiculartangentlinescanhedravni
totheconieoidor?+by?+cz?=l.
29.P(l.3.2)isapointontheconicoid.
1?-2y?+s=?+s=o.
Findthelocusoi?themid-pointsofchordsdrawnparalleltoOP.
2.14.1PracticalsQuestionBank
IntegralCalculus
Unit-I
l.LetR=[-3.3]x[-2.2].Withoutexplicitlyevaluatinganyiteratedintegrals.detenninethe
valueof
f/(1%.mm
n
2.Integratethefunctionf(x.y)=31yovertheregionboundedbyy=3213midy=

l0.
l3.
.f(:.y.:)=2:?y+z:ll"istheregionhoundedbythecylinder:=
.Integratethefunctionf(x.y)=1+yovertheregionhoundedbyz+y=2andy?-2y-.'r=0.
.Evaluatefforyrlzl.whereDistheregionboundedby.r=y?andy=1".
.Evaluateffo?zd/i.whereDisthetriangularregionwithvertices(0.0).(l.0)and(1.1).
.Evaluateffbilyrl/l.whereDistheregionboundedbyry?=1.y=r.r=0andy=3.
.EvaluateffD(.-r?2y)d?l.whereDistheregionboundedb_vy=:2+2andy=212?2.
.EvaluateffD(r"?+y')d/l.whereDistheregioninthe?rstquadrantboundedbyy=4r.y=3:
and.'ry=3.
.Considertheintegral
22:
/(2:+l)rlyd.r
oa
a)Evaluatethisintegral.
b)Sketchtheregionofintegratiou.
c)Writeanequivalentiteratedintegralwiththeorderofintegrationreverse.Evaluatethis
newintegralandcheek_vouransweragreeswithpart(a).
Findthevolumeoftheregionunderthegraphof
!(1-u)=2?|1|?|y|
andabovethery-plmre
Unit-II
IntegratethefollowingovertheindicatrxlregionW.
y?.thery-plane.the
planes1=0.:=l.l!?/&.y=2.
.j(z.y.:)=y:Wistheregionboundedbytheplane1+y+z=2.thecylinder12+:2=l
andy=0.
[(r.y.:)=8ryzzWistheregionhoundedbythecylindery=r2.theplaney+:=9and
thezy-plane.

l7.
l9.
20.
2
r~
22.
23.
24.
25.
.f(.'r.y.:)=z:Wistheregioninthe?rstoctantboundvxlbythecylindery:+z?=9andthe
planesy=1.:=0andz=0.
.f(r.y.z)=l?s?:Wisthetetrahedronwithvertiees(0.0.0).(1.0.0).(0.2.0)and(0.0.3).
.j(r.y.:)=3r;II"istheregioninthe?rstoctantboundedby:.=r2+5/2.:=0.y=0and
z=-l.
j(x.y.z)=r+y:Wistheregionboundedbythecylinderr2+3:2=9andtheplaney=0.
r+y=3.
.[(1.y.z)=z:II?istheregionboundedbyz=0.I?:+4y?=-lturdz=1+2.
Unit-III
IntegratethefollowingovertheindicatedregionW.
](.-r.y.:)=-l.r+yzWistheregionboundedby1'=y?.y=:..r=yaadz=0.
j(z.y.z)=.r:Wistheregioninthe?rstoctantboundedbyz=r2+2f.z=G
?
:2
?
y?.
r=0arrdy=0.
LetT(u.r')=(3ll.?v)
.WriteT(u.u)asAIt;lforasuitablematrixA.
DeztribetheimageD=T(D?).whereD?istheunitsquare[0.1]x[0.1].
f/?li?
1?2y
D
whereDistheregioninR2mrelosetlbytheIirresy=

y=0and
I+
y=I.
Deterrrrinethevalueof
Evaluate
(2.r+y?3)?
tld.
(2y?:r+6)?Iy
whereDisthesquarewithwrtices(0.0).(2.l).(3.-l)iurd(l.-2).(Hint:FirstdtetchDand
?ndtheequationsofitssides)
Evaluate
f]cw?rz+yzM/l.
0
whereDistheshadedregioninthefollowing?gure-l.

Arr:of|rcircle
ofradiusl.i,
(ceiilenaat'
"Iilli?l
\

Figurel:
2G.Evaluatel
[Itl?.
0
WhereDisthediskofradiuslwithcerterat(0.l).(BecarefulwhenyoudeatribeD.)
27.Determinethevalueof_
iv
whereWisthesolidregionboundedbytheplanez=12andtheparaboloidz=2r?+2y?
?
6.
FirstRanker.com-FirstRanker'sChoice

This post was last modified on 21 November 2019