VNSGU BA 2019 1st Year 2235 Statistics Higher Question Paper

VNSGU (Veer Narmad South Gujarat University) BA (Bachelor of Arts) 2019 1st Year 2235 Statistics Higher Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

*RAN-2235*
* R A N - 2 2 3 5 *
RAN-2235
F.Y.B.A. (External) Examination
March / April - 2019
Statistics Higher Paper : 1
k|Q"p : / Instructions
"uQ? v$ip?h?g r"ip"uhpmu rhNsp? D?fhlu `f Ah?e gMhu.
Seat No.:
Fill up strictly the details of signs on your answer book
Name of the Examination:
F.Y.B.A. (External)
Name of the Subject :
Statistics Higher Paper : 1
Subject Code No.: 2
2
3
5
Student's Signature
(1) S>dZu bpSy>"p A,,L$ ?p?"p `|fp NyZ v$ip?h? R>?.
(2) kpv$p (?p?N?pd flus) L?$?eyg?V$f"p? D`ep?N L$fu iL$pi?.
(3) Apg?M `? rh",,su'u Ap`hpdp,, Aphi?.
?. 1 (A) dp,,N A"? `yfhW$p"p rh^?ep? Dv$plfZ klus kd?hp?.
(6)

f (- 4) - f ( )
2
(b) ?
2
x
f (x) = x -
lp?e sp?
ip?^p?.
(5)
2
f (- 2)

(L$) "uQ?"p"u qL,,$ds d?mhp?.

(6)
3
2
3

(1)
x
2
- x
5
+ x
4
x + x - 12
lim
(2) lim
3
2
2
x " 0
x
3
+ x
2
- x
2
x " 3 x - 4x + 3

(X$) L$p?V$L$"u dv$v$'u lim x
2 2 + 1 "u qL,,$ds d?mhp?.
(3)
x " - 1
A'hp

(A) kd?hp?.

(6)

(1) kyf?M rh^?e
(2) rh^?e"p? rh?spf
(3) rh^?e"p? ?v$?i A"? kl?v$?i
(b) f(d) = 30 ? 2d ? d2 dpV?$ d = 0, 1, 2, 3, 4 qL,,$dsp? gC Apg?M v$p?fp?.
(5)
RAN-2235 ]
[ 1 ]
[ P.T.O. ]


(L$) "uQ?"p"u qL,,$ds d?mhp?.
(6)
2
3
(1)
x - 4
x + 1
lim
(2) lim 2
x " 2
x - 2
x "- 1 x - 1
(X$) gn"u ?ep?ep Ap`p?. gn"p L$p?C `Z b? r"ed S>Zphp?.
(3)
?. 2 (A) rhL$g""u ?ep?ep Ap`p?. rhL$g""p? A'?ip?dp,, D`ep?N S>Zphp?.
(5)

(b) rhL$g" d?mhp?.
(6)
(1)
1
1
Y = X
3
1
` -
j 1
x c -
m (2)
Y =
^x - 1h
4 - X
(L$) "uQ? Ap`?g dp,,N A"? `yfhW$p rh^?e"p? D`ep?N L$fu b?f kdsp?g qL,,$ds ip?^p?.
(5)
p
p
8
2
D = 50 -
,
S = 10 +
7
3
(X$) rh^?e Y = x2 "y,, rhL$g" ?ep?ep"u dv$v$'u d?mhp?.
(4)
A'hp

(A) kd?hp?.
(6)
(1) dp,,N"u d|?ekp`?nsp
(2) Ly$g MQ? rh^?e A"? kf?fpi MQ? rh^?e
(b) A?L$ h?sy dpV?$ Ly$g AphL$ rh^?e R = 20X ? 4X2 A"? MQ? rh^?e C = 4X R>?.
(6)
dl?d "ap dpV?$ L?$V$gp A?L$dp b"phhp `X?$? dl?d "ap? `Z ip?^p?.
(L$) rhL$g" d?mhp?.
(8)
(1)
log
Y
x
=
x (2) Y = X3 - 3X2 - 9X dpV?$ ?e|"sd qL,,$ds
?. 3 (A) k,,Qe"u ?ep?ep Ap`p?. kprbs L$fp? L?$ nCr + nCr-1 = n+1Cr.
(6)

(b) 4 R>p?L$fp A"? 3 R>p?L$fuAp?"? A?L$ lpfdp,, L?$V$gu fus? Np?W$hu iL$pe L?$ S>?'u 2 R>p?L$fuAp? (5)
kp'? "p Aph? ?
(L$) ? nPr = 360 A"? nCr = 15 lp?e sp? n A"? r ip?^p?.
(5)
(X$) 4, 5, 7, 6, 2, 8, 1 A,,L$p?"p? D`ep?N L$fu 3 A,,L$p?"u L?$V$gu k,,?ep b"phu iL$pe?
(4)
s?dp"u L?$V$gu k,,?epAp? A?L$u li?
A'hp

(A) ?Qrgs k,,L?$sp? ?dpZ? kprbs L$fp? L?$
!
n
n
Pr =
(6)
^n - rh!
RAN-2235 ]
[ 2 ]
[ Contd.


(b) A?L$ ?`?dp,, b? rhcpN R>?. rhcpN A A"? rhcpN B dp,, A"y?$d? 4 A"? 3 ?p? (6)
R>?. v$f?L$ rhcpNdp,,'u Ap?R>pdp,, Ap?R>p 1 ? dmu Ly$g 5 ?p?"p,, S>hpb Ap`hp"p
lp?e sp? L$p?C `Z Dd?v$hpf L?$V$gu fus? S>hpb `k,,v$ L$fu iL?$?
(L$) ? 10C3 + 2(10C4) + 10C5 = 12C5 lp?e sp? x ip?^p?.
(5)

(X$) A?L$ AcfpB `f 3 A,,N?, 4 rl?v$u A"? 5 NyS>fpsu `y?sL$p? R>?. Ly$g L?$V$gu
(3)
Np?W$hZu i?e b"?
?. 4 (A) k,,cph"p"u NprZsuL$ ?ep?ep Ap`p?. s?"u dep?v$pAp? S>Zphp?.
(5)

(b) A?L$ il?fdp,, ?Z v$?r"L$ hs?dp"`?p? A, B A"? C ?L$pris 'pe R>?. il?f"p `y?s
(6)
he"p "pNqfL$p?"u A?L$ s`pkdp,, S>Zpey,, L?$ 20% "pNqfL$p? A hp,,Q? R>?, 16% B hp,,Q?
R>?, 14% C hp,,Q? R>?, 8% A A"? B hp,,Q? R>?, 5% A A"? C hp,,Q? R>?, 4% B A"?
C hp,,Q? R> A"? 2% A, B A"? C ?Z? hp,,Q? R>?. sp? L?$V$gp "pNqfL$p? Ap?R>pdp,, Ap?Ry>,,
A?L$ hs?dp"`? hp,,Q? R>? s? ip?^p?.
(L$) ? P(A) 1
=
, P^B
1
h =
,
1
P(A + B) =
lp?e sp?
(3)
3
4
6
P (A , B) A"? P (Ar / r)
B ip?^p?.

(X$) gu` hj? " lp?e s? hj?dp,, 53 frhhpf Aphhp"u k,,cph"p ip?^p?.
(3)
A'hp

(A) kd?hp?.
(1) r"v$i? AhL$pi (2) r":i?j OV$"pAp? (3) `f?`f r"hpfL$ OV$"pAp?.
(6)

(b) 52 `?pdp,,'u 2 `?p ep?R>uL$ fus? g?hpdp,, Aph? sp? A?L$ bpv$ipl A"? A?L$ fpZu"y,,
(5)
`?y,, lp?hp"u k,,cph"p ip?^p?.
(L$) A?L$ kd|ldp,, 5 R>p?L$fpAp? A"? AdyL$ R>p?L$fuAp? R>?. s?dp,,'u 3 R>p?L$fpAp? `k,,v$ 'hp"u (6)
k,,cph"p 1 R>?. sp? s? kd|ldp,, R>p?L$fuAp?"u k,,?ep ip?^p?.
2
(X$) ? P(A) 2
=
,
1
P(B) =
,
4
P(A + B) =
lp?e sp?
(3)
3
2
15
P (A + B') 1
=
ip?^p?.
6
?. 5 (A) A,,sh?i""u ^pfZpAp? A"? D`ep?Np? S>Zphp?.
(6)
(b) 4, 6, 8, 10 A"? 12 Ahgp?L$"p? dpV?$ "7" "? A"ygnu"? ?'d ?Z kpv$u ?Ops ip?^p?. (8)
Ap kpv$u ?Opsp? `f'u ?'d ?Z L?$?ue ?Opsp? d?mhp?.
RAN-2235 ]
[ 3 ]
[ P.T.O. ]


(L$) e?R> Qg x "y,, k,,cph"p rhsfZ "uQ? dyS>b R>?. s? `f'u e?R> Qg X "u
(6)
A`?nus qL,,$ds A"? rhQfZ ip?^p?.
X
0
1
2
3
4
5
P(X)
K
0.2
0.1
K
0.05
0.05
A'hp
?. 5 (A) NprZsue A`?np kd?hp?. NprZsue A`?np"p NyZ^d? gMp?.
(6)
(b) "uQ?"u dprlsu `f'u X = 18 dpV?$ Y "u qL,,$ds A,,v$p?.
(8)
X
14
15
17
20
22
Y
8
30
35
42
50
(L$) "uQ?"p L$p?V$L$ `f'u M|V$su dprlsu ip?^p?.
(6)
X
11
12
13
14
15
16
17
18
Y
8
10
13
?
24
30
36
45
ENGLISH VERSION
Instructions:
(1) Figures to the right indicates full marks of the questions.
(2) Simple calculator (without programmable) can be used.
(3) Graph and statistical table can be provided on request.
Q 1. (a) Explain demand and supply function with illustration.
(6)
-
-

(b)
2
f( 4) f(2)
If f(x) = x
x
-
then find
.
(5)
2
f(- 2)

(c) Find the values of the following.

(6)
3
2
3

(1)
x
2
- x
5
+ x
4
x + x - 12
lim
(2) lim
3
2
2
x " 0
x
3
+ x
2
- x
2
x " 3 x - 4x + 3

(d) Obtain the value of lim x
2 2 + 1 with the help of table
(3)
x " - 1
OR
RAN-2235 ]
[ 4 ]
[ Contd.


(a) Explain.

(6)

(1) Linear function
(2) Range of a function
(3) Domain and Codomain of a function
(b) Draw the graph for the function f(d) = 30 - 2d - d2 for considering the
(5)
values d = 0, 1, 2, 3, 4
(c) Find the values of the following.
(6)
2
3
(1)
x - 4
x + 1
lim
(2) lim 2
x " 2
x - 2
x "- 1 x - 1
(d) Definelimit.Statetheanytworulesofalimit
Q 2. (a) Definedifferentiation.Statetheusesofdifferentiationineconomics.
(5)

(b) Obtain differentiation.
(1)
1
1
Y = X
3
1
` -
j 1
x c -
m (2)
Y =
^x - 1h
4 - X
(c) Find the equilibrium price using the below given demand and
(5)
supply function.
p
p
8
2
D = 50 -
,
S = 10 +
7
3
(d) Obtain the differentiation Y = x2 of the following function with the help (4)
ofdefinition.
OR

(a) Explain. -
(6)
(1) Elasticity of demand
(2) Total cost function and Average cost function.
(b) For a commodity total revenue function R - 20X - 4X2 and cost
(6)
functions C = 4X.
Howmanyunitsproducedformaximumprofit?Alsofindmaximumprofit.
(c) Obtain differentiation.
(8)
(1)
log
Y
x
=
x (2) Y = X3 - 3X2 - 9X for minimum value.
RAN-2235 ]
[ 5 ]
[ P.T.O. ]

Q 3. (a) Definecombination.ProvethatnCr+nCr-1=n+1Cr.
(6)

(b) In how many ways can 4 boys and 3 girls stand in a row so that no two
(5)
girls are together?
(c) Find n and r if nPr = 360 and nCr = 15.
(5)
(d) How many 3 digited numbers can be formed using the digits 4, 5, 7, 6,
(4)
2, 8, 1 only One time? How many of them are odd numbers?
OR

(a) In usual notations prove that
!
n
n
Pr =
(6)
^n - rh!

(b) A question paper which is divided into two sectionconsisting of 4 and 3 (6)

questions respectively. Answer 5 questions selecting at least one questions
from each section. In how many ways can a candidate select questions?
(c) If 10C3 + 2(10C4) + 10C5 = 12Cx,findx.
(5)

(d) There are 3 English, 4 Hindi, and 5 Gujarati books on a shelf.
(3)
How many total arrangements are possible?
Q 4. (a) Giveadefinitionofmathematicalprobability.Stateitslimitations?
(5)

(b) In a city three daily new papers A, B, C are published. It was found
(6)
from a survey that 20% read A, 16% read B, 14% read C, 8% read
both A and B, 5% read both A and C, 4% read both B and C and 2%
read all the three. Calculate the percentage of people who read at least
one of them.
(c) If P( )
A
1
=
, P^B
1
h =
,
1
P(A + B) =
thenfind
3
4
6
P (A , B) and P^A/ Bh

(d) What is the probability of getting 53 Sundays in a non leap year?
(3)
OR

(a) Explain.
(1) Sample space (2) Exhaustive events (3) Mutually exclusive events (6)

(b) Two cards are drawn from a pack of 52 cards. What is the probability
(5)
that there is one king and one queen?
(c) There are 5 boys and certain girls in a group. Three boys are selected
(6)
from that group whose probability is 1 thenfindnumberofgirlsin
2
that group.
RAN-2235 ]
[ 6 ]
[ Contd.


(d) If P( )
A
2
=
,
1
P ^Bh =
,
4
P(A + B) =
thenfind
(3)
3
2
15
P (A + '
B ) 1
=
.
6
Q 5. (a) State the assumptions and uses of interpolation.
(6)
(b) Findfirstthreemomentsabout"7"usingtheobservations4,6,8,10,12. (8)
FromtheseRawmoments,obtainfirstthreecentralmoments.
(c) The probability distribution of a random variable X is given below.
(6)
FromthatfindtheExpectedvalueandvarianceofvariableX.
X
0
1
2
3
4
5
P(X)
K
0.2
0.1
K
0.05
0.05
OR

(a) Explain mathematical expectation. Write characteristics of a
(6)
mathematical expectation.
(b) Estimate Y for X = 18 from the following data.
(8)
X
14
15
17
20
22
Y
8
30
35
42
50
(c) Find missing data from the following table.
(6)
X
11
12
13
14
15
16
17
18
Y
8
10
13
?
24
30
36
45
RAN-2235 ]
[ 7 ]
[ 180 ]

This post was last modified on 03 January 2021