Download OU B.Pharma 1st Year 2020 January 13242 NON CBCS Mathematics Question Paper

Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2020 January 13242 NON CBCS Mathematics Previous Question Paper

- -
Code No. 13242 / Non-CBCS
FACULTY OF PHARMACY
B. Pharmacy I ? Year (Non-CBCS)(Backlog) Examination, August 2019
Subject : Mathematics
Time : 3 hr s Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Find the solution of the equation 10
x+3
= 6
2x
.
ii) If tan 35
0
= K then the value of
0 0
0 0
tan125 tan145 1
tan125 tan145
? +
-
.
OR
b) i) log 2
x
+ log 2
(x-2)
= 3.
ii) if tan
3
1
= ? and tan
7
1
= ? then show that tan( ) 1. ? 2? = +
2 a) i) Find the derivative of tan x using first principle.
ii) Show that the function is not differentiable at 2 where
()
?
?
?
?
? ?
=
2 x 2;
2 x 0 x;
x f
OR
b) i) Find the maximum and minimum values of the polynomial
f(x) = x
3
? 4x
2
+ 8x ? 6
ii) If ,
x
y
f xy u ?
?
?
?
?
?
= prove that 2u
y
u
y
x
u
x =
?
?
+
?
?
.
3 a) i) Evaluate
?
- +
dx
2x 5x 3
1
2
ii)
?
+
+
dx
x cos 1
x sin 1
2
2
OR
b) i) Evaluate
?
+
dx
5sinx 4
1
ii) Evaluate
?
- +
+
dx
6 3x x
6 2x
2
4 a) i) If
?
?
?
?
?
?
?
?
?
?
=
2
2
2
c bc ac
bc b ab
ac ab a
A and a
2
+ b
2
+ c
2
= 1 then find A
2
.
ii) Solve the equation 7x + 5y ? 13z + 4 = 0, 9x + 2y + 11z ? 37 = 0,
3x ? y + z = 2 by matrix inversion method.
OR
..2


FirstRanker.com - FirstRanker's Choice
- -
Code No. 13242 / Non-CBCS
FACULTY OF PHARMACY
B. Pharmacy I ? Year (Non-CBCS)(Backlog) Examination, August 2019
Subject : Mathematics
Time : 3 hr s Max. Marks : 70
Note : Answer all questions. All questions carry equal marks.
1 a) i) Find the solution of the equation 10
x+3
= 6
2x
.
ii) If tan 35
0
= K then the value of
0 0
0 0
tan125 tan145 1
tan125 tan145
? +
-
.
OR
b) i) log 2
x
+ log 2
(x-2)
= 3.
ii) if tan
3
1
= ? and tan
7
1
= ? then show that tan( ) 1. ? 2? = +
2 a) i) Find the derivative of tan x using first principle.
ii) Show that the function is not differentiable at 2 where
()
?
?
?
?
? ?
=
2 x 2;
2 x 0 x;
x f
OR
b) i) Find the maximum and minimum values of the polynomial
f(x) = x
3
? 4x
2
+ 8x ? 6
ii) If ,
x
y
f xy u ?
?
?
?
?
?
= prove that 2u
y
u
y
x
u
x =
?
?
+
?
?
.
3 a) i) Evaluate
?
- +
dx
2x 5x 3
1
2
ii)
?
+
+
dx
x cos 1
x sin 1
2
2
OR
b) i) Evaluate
?
+
dx
5sinx 4
1
ii) Evaluate
?
- +
+
dx
6 3x x
6 2x
2
4 a) i) If
?
?
?
?
?
?
?
?
?
?
=
2
2
2
c bc ac
bc b ab
ac ab a
A and a
2
+ b
2
+ c
2
= 1 then find A
2
.
ii) Solve the equation 7x + 5y ? 13z + 4 = 0, 9x + 2y + 11z ? 37 = 0,
3x ? y + z = 2 by matrix inversion method.
OR
..2

- -
Code No. 13242 / Non-CBCS
- 2 -
b) i) Find the rank of the matrix
?
?
?
?
?
?
?
?
?
? -
=
6 5 4 3
4 3 2 2
3 2 1 1
A
ii) If
?
?
?
?
?
?
?
?
?
?
-
- - =
0 x 1
2 0 2
1 2 0
A is a skew symmetric matrix, then find the value of x.
5 a) i) Find the equation of circle passing thrgh the points (1, 0) (0, 1) (1, 1).
ii) Find the equation of the line having intercepts a and b on the axes such
that a + b = 3 and ab = 1.
OR
b) i) Write the basic mathematical principles are used in Biological testing.
ii) Find the equation of circle passing thrgh ( -7, 1) and having centre at
(-4, -3).
******


FirstRanker.com - FirstRanker's Choice

This post was last modified on 03 May 2020