Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2011 6504 Mathematics Previous Question Paper

Code No.: 6504
if x # 0
if x
(ii) Show that f (x) =
{cos cvc - cos bx .
x
2

b
2 _
a
2
2
0
FACULTY OF PHARMACY
B.Pharmacy I Year (Supplementary) Examination, December 2011
MATHEMATICS
Time : 3 Hours] [Max. Marks : 70
All questions carry equal marks.
log 2"
b
log 2 log 2
c

1. (a) (i) If and a
3
b
2
c = 1, find the value of P.
4 6 3p
(ii) If tanA =1 / 2 and tanB = 1 / 3, where A and B are acute angles then find A+B.
Or
(b) (i) If 2logxa + logaxa + 3loga
2
xa = 0, find x.
(ii) sinA.sin(60+A)sin(60 - A) =
1
/4sin3A.
2. (a) (i) Find the derivative of the function cosax using first principle.
where a and b are real constants, is continuous at 0.
(iii) Solve ?
d
dx
Y
= sin(x + y) + cos(x + y).
Or
(b) (i) Show that f (x) = sin x (1-+ Cos x) has a maximum value at
x =IT/
.

X
3
? y
3
X + y

(ii) If u = Sec
-I
then show that

cu cu ?
x +y
^
= 2 COt
cx ey
IP.T.O.
FirstRanker.com - FirstRanker's Choice
Code No.: 6504
if x # 0
if x
(ii) Show that f (x) =
{cos cvc - cos bx .
x
2

b
2 _
a
2
2
0
FACULTY OF PHARMACY
B.Pharmacy I Year (Supplementary) Examination, December 2011
MATHEMATICS
Time : 3 Hours] [Max. Marks : 70
All questions carry equal marks.
log 2"
b
log 2 log 2
c

1. (a) (i) If and a
3
b
2
c = 1, find the value of P.
4 6 3p
(ii) If tanA =1 / 2 and tanB = 1 / 3, where A and B are acute angles then find A+B.
Or
(b) (i) If 2logxa + logaxa + 3loga
2
xa = 0, find x.
(ii) sinA.sin(60+A)sin(60 - A) =
1
/4sin3A.
2. (a) (i) Find the derivative of the function cosax using first principle.
where a and b are real constants, is continuous at 0.
(iii) Solve ?
d
dx
Y
= sin(x + y) + cos(x + y).
Or
(b) (i) Show that f (x) = sin x (1-+ Cos x) has a maximum value at
x =IT/
.

X
3
? y
3
X + y

(ii) If u = Sec
-I
then show that

cu cu ?
x +y
^
= 2 COt
cx ey
IP.T.O.
3. Find the value of
-
9 cos x - sin x
(ii) Evaluate
4
s
i
r
" ? 5
c
os
e +
11 "
(m) Evaluate .1
CIX
-
GS
2
(Xe
x
)
+sinx
'valuate -
x + cos
x

sin2x
v ate
' a
1_
a cos x + &In X
dx for x E
4. (a) (1) tha
+t : 0-1-,b:-..-
1 xt-th 17.? o P
4
P
ti h V

show that.
b) Solve the following e
3x4 4y + Sz- 18
2x- y 84v= 13
5x-2ij# 7z=20
Or
GssJthii ffi
If 0 then hP-w
cos
:
cos *nil
cos0 sin 0
I a 15 SA cos0sin0
os
-
.in sin20

FirstRanker.com - FirstRanker's Choice
Code No.: 6504
if x # 0
if x
(ii) Show that f (x) =
{cos cvc - cos bx .
x
2

b
2 _
a
2
2
0
FACULTY OF PHARMACY
B.Pharmacy I Year (Supplementary) Examination, December 2011
MATHEMATICS
Time : 3 Hours] [Max. Marks : 70
All questions carry equal marks.
log 2"
b
log 2 log 2
c

1. (a) (i) If and a
3
b
2
c = 1, find the value of P.
4 6 3p
(ii) If tanA =1 / 2 and tanB = 1 / 3, where A and B are acute angles then find A+B.
Or
(b) (i) If 2logxa + logaxa + 3loga
2
xa = 0, find x.
(ii) sinA.sin(60+A)sin(60 - A) =
1
/4sin3A.
2. (a) (i) Find the derivative of the function cosax using first principle.
where a and b are real constants, is continuous at 0.
(iii) Solve ?
d
dx
Y
= sin(x + y) + cos(x + y).
Or
(b) (i) Show that f (x) = sin x (1-+ Cos x) has a maximum value at
x =IT/
.

X
3
? y
3
X + y

(ii) If u = Sec
-I
then show that

cu cu ?
x +y
^
= 2 COt
cx ey
IP.T.O.
3. Find the value of
-
9 cos x - sin x
(ii) Evaluate
4
s
i
r
" ? 5
c
os
e +
11 "
(m) Evaluate .1
CIX
-
GS
2
(Xe
x
)
+sinx
'valuate -
x + cos
x

sin2x
v ate
' a
1_
a cos x + &In X
dx for x E
4. (a) (1) tha
+t : 0-1-,b:-..-
1 xt-th 17.? o P
4
P
ti h V

show that.
b) Solve the following e
3x4 4y + Sz- 18
2x- y 84v= 13
5x-2ij# 7z=20
Or
GssJthii ffi
If 0 then hP-w
cos
:
cos *nil
cos0 sin 0
I a 15 SA cos0sin0
os
-
.in sin20

3
6504
5. (a) (i) Find the equation of the line passing through (2, 0) (0, 3).
(ii)
If a line makes an angle of 60? with positive x - axis, what is its slope.
(iii)
Discuss the set of postulates defining Boolean Algebra.
Or
(b) (i) Write Boolean function to realize the full adder and draw the corresponding
logic diagram.
(ii) Find the equation of the circle passing through the origin 0 (0,0) and the
points (1, 2), (-1, -2)
FirstRanker.com - FirstRanker's Choice