Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2010 7004 Mathematics Previous Question Paper
FACULTY OF TECHNOLOGY
B. Pharmacy I - Year (Supplementary) Examination, March 2010
Subject : MATHEMATICS
Time : 3 Hours). (Max. Marks: 70
Note: Answer All questions. All questions carry equal marks.
1.(a) If x = log , y = log r and z = log then show that xyz = x + y + z + 2.
1
(b) If sin x + sin y = -
1
and cos x + cos y = - then show that
4 3
x ( + y 3 7
tan
2 4
and cot (x + y)
24
A B
(c) If A + B + C = 180
?
, prove that sin A + sin B + sin C = 4 cos --cos -cos --
2 2 2
OR
(d) If 8a is not an integral multiple of Tr, prove that
tan a + 2tan 2a + 4tan 4a + 8cot 8a = cota
B C
(e) If A + B + C = 180
?
, prove that, sin A + sin B - sin C = 4sin
f
sin-cos
2 2 2
Cosa sin a
(f) show that acos 2a + bsin 2a = a.
a b
au
2.(a) If u = x
3
+ y
3
- x
2
y + xy
2
, find
xP-
ax
I -'-j- +
ay ?
x -2
(b) Compute Lt .
x
-
+
2
X
3
8
(c) Find
c
i
f
when y = logx using first principle.
dx
OR
(d) Find the maximum value of 2x
4
- 3x
2
- 36x + 10.
0
2
0 0
2
9 0
2
0
(e) lf x = r cose, y = r sine, then find
ax
2
' ay
2
'axay
(f) Differentiate, \I
I+ x2
1- X
2
X
5
3.(a) Evaluate dx.
1+ X
12
(b) Evaluate fx2
2x +1
+x+idx
(c) Evaluate
f
dx
l+sin2x
OR
%
(d) Evaluate fxsinx dx.
0
Evaluate
dx
6
1
1+sinx
Find the area bounded between the curves y
2
?= 4ax, x
2
= 4by.
(e)
(f)
FirstRanker.com - FirstRanker's Choice
Code No. 7004
FACULTY OF TECHNOLOGY
B. Pharmacy I - Year (Supplementary) Examination, March 2010
Subject : MATHEMATICS
Time : 3 Hours). (Max. Marks: 70
Note: Answer All questions. All questions carry equal marks.
1.(a) If x = log , y = log r and z = log then show that xyz = x + y + z + 2.
1
(b) If sin x + sin y = -
1
and cos x + cos y = - then show that
4 3
x ( + y 3 7
tan
2 4
and cot (x + y)
24
A B
(c) If A + B + C = 180
?
, prove that sin A + sin B + sin C = 4 cos --cos -cos --
2 2 2
OR
(d) If 8a is not an integral multiple of Tr, prove that
tan a + 2tan 2a + 4tan 4a + 8cot 8a = cota
B C
(e) If A + B + C = 180
?
, prove that, sin A + sin B - sin C = 4sin
f
sin-cos
2 2 2
Cosa sin a
(f) show that acos 2a + bsin 2a = a.
a b
au
2.(a) If u = x
3
+ y
3
- x
2
y + xy
2
, find
xP-
ax
I -'-j- +
ay ?
x -2
(b) Compute Lt .
x
-
+
2
X
3
8
(c) Find
c
i
f
when y = logx using first principle.
dx
OR
(d) Find the maximum value of 2x
4
- 3x
2
- 36x + 10.
0
2
0 0
2
9 0
2
0
(e) lf x = r cose, y = r sine, then find
ax
2
' ay
2
'axay
(f) Differentiate, \I
I+ x2
1- X
2
X
5
3.(a) Evaluate dx.
1+ X
12
(b) Evaluate fx2
2x +1
+x+idx
(c) Evaluate
f
dx
l+sin2x
OR
%
(d) Evaluate fxsinx dx.
0
Evaluate
dx
6
1
1+sinx
Find the area bounded between the curves y
2
?= 4ax, x
2
= 4by.
(e)
(f)
1 2 2
.. 2..
Code No. 7004
4.(a) If A = 2 1 2 , then show that A
2
? 4A 51 = 0
2 2 1
1 2 3
7
(b) Define raw matrix, column matrix. Find the rank of the matrix. A = 2 3 4
0 1 2
OR
Ogo
Solve the following equation by Gauss-Jordon method.
3x + 4y + 5z = 18
2x y + 8z = 13
5x ? 2y + 7z = 20
(d) If A =
3 ?2
-
[
1 6
B =
4 ?1
2 5
, then find AB and BA.
5.(a) Define Boolean algebra. Discuss the set of postulates defining Boolean algebra.
(b) Construct logic circuit for the following Boolean function using AND / OR / NOT
gates
f = (A + B) (A B)
OR
(c) Show that the points (-1, 7) (3, -5) (4, -8) are collinear.
(e) Show that the points 2i+ 31?K, 1 -27 + , 3i+4j- 2k
are coplanar.
? ?
FirstRanker.com - FirstRanker's Choice
This post was last modified on 03 May 2020