Download OU (Osmania University) B.Pharma 1st Year (Bachelor of Pharmacy) 2015 8035 Mathematics Previous Question Paper

Pharmacy
OU - 1701 OU - 1701
Code No. 8035 / M
FACULTY OF PHARMACY
B. Pharmacy I-Year (Main) Examination, June 2015
Subject : Mathematics
Time : 3 Hours Max. Marks: 70
Note: Answer all questions. All questions carry equal marks.
1 (a) Prove that log (a. b) = log a + logb.
(b) If
o
o o
o o
Tan Tan x
60 cos
) 19 26 1 (
19 tan 26 tan
=
-
+
, then find the value of x.
OR
(c) If sec A + tan A = P, then find sin A.
(d) If a = log
24
12, b = log
36
24 and c = log
48
36, then. Find 1 + abc.
2 (a) Find the
x
x
x
2 cos 1
4 cos 1
lim
0
-
-
?
(b) If u = sin
-1
( )
?
?
?
?
?
?
?
?
+
+
y x
y x
2 2
show that . tanu
y
u
y
x
u
x =
?
?
+
?
?
OR
(c) Find differentiation of Sinx from the first principle.
(d) Find
x
x x
x
tan sin
lim
0
-
?
3 (a) Evaluate
?
+
dx
x
x
12
5
1
(b) Find the area bounded by the ellipse . 1
2
2
2
2
= +
b
y
a
x
OR
(c) Evaluate
?
- +
+
dx
x x
x
5 14 3
7 3
2
(d) Show that the area of a loop of the curve y
2
= x
2
(4 - x
2
) is
3
16
.
4 (a) If a, b, c are different and the determinant
0
1
1
1
3 2
3 2
3 2
=
-
-
-
c c c
b b b
a a a
then prove that abc = 1.
(b) Solve x + 4y  2z =3, 3x + y + 5z =7, 2x + 3y + z =5 by Gauss elimination method.
OR
(c) Solve 3x + y  z=0, 5x + 2y  3z =2, 15x + 6y  9z=5 by Gauss elimination method.
(d) Define determinant of a matrix and find A
-1
if
?
?
?
?
?
?
?
?
?
?
=
3 1 4
4 2 3
3 2 1
A
5 (a) Define linear and non-linear graphs with an example to each.
(b) Find the centre and radius of the circle x
2
+ y
2
+ 4x + 6y + 4 = 0.
OR
(c) Find the focus, vertex of the parabola y
2
= 5x + 4y +1.
(d) Find the distance between the pits (-1, 1) and (2, 3).
*****