Download GTU BE/B.Tech 2019 Summer 4th Sem Old 140001 Mathematics Iv Question Paper

Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 4th Sem Old 140001 Mathematics Iv Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?IV(OLD) ? EXAMINATION ? SUMMER 2019
Subject Code:140001 Date:09/05/2019
Subject Name: Mathematics-IV
Time:02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q.1 (a)
Find all roots of
3
8i .
07
(b)
1) Find real and imaginary part of
? ? . 4
2
z z z f ? ?
Also, calculate the value
of f at . 1 i z ? ?
04
2) Show that
? ?
? ?
0 ; 0
0 ;
Im
?
?
?
z
z
z
z
z f

is not continuous at the origin.
03

Q.2 (a)
Find the image of the region
1 ? z
under the transformation
. 2 i z w ? ?

Sketch the region and its image.
07
(b)
Show that
? ?
2 3
3 2 , xy x x y x u ? ? ?
is harmonic in some domain D and find a
harmonic conjugate of
? ?. , y x u

07
OR
(b) If ? ( ? ) is an analytic function of z, show that
(
? ?
| ? ( ? ) | )
2
+ (
? ?
| ? ( ? ) | )
2
= | ? ?
( ? ) |
2

07

Q.3 (a)
Evaluate ? ? 2
? 2 + ? 0
along the line ? =
? 2
?
07
(b) Evaluate:
1. ?
? ? ? 3
? , over the contour ? , where ? is the circle | ? | = 1 .
2. ?
? ? ? ( 1 ? ? )
3
? , counterclockwise over C, where C: | ? | = 2
3. ?
? ? ( ? ? 1 ) ( ? ? 3 )
? , counterclockwise over C, where C: | ? | = 2
07
OR
Q.3 (a)
Determine the Laurent series expansion of ? ( ? ) =
1
( ? + 1 ) ( ? + 3 )
valid for
a) | ? | < 1 b) 1 < | ? | < 3
07
(b) Using Newton?s divided difference formula, compute ? ( 10 . 5 ) from the
following data:
x: 10 11 13 17
f(x): 2.3026 2.3979 2.5649 2.8332

07

Q.4 (a) Find a real root of the equation ? 3
+ 4 ? 2
? 1 = 0, lies between 0 and 1 by using
bisection method correct to decimal places.
07
(b)
Evaluate
? ?
?
?
3
0
1 x
dx
with n=6 by using Simpson?s 3/8 rule and hence calculate
ln 2.

07
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?IV(OLD) ? EXAMINATION ? SUMMER 2019
Subject Code:140001 Date:09/05/2019
Subject Name: Mathematics-IV
Time:02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q.1 (a)
Find all roots of
3
8i .
07
(b)
1) Find real and imaginary part of
? ? . 4
2
z z z f ? ?
Also, calculate the value
of f at . 1 i z ? ?
04
2) Show that
? ?
? ?
0 ; 0
0 ;
Im
?
?
?
z
z
z
z
z f

is not continuous at the origin.
03

Q.2 (a)
Find the image of the region
1 ? z
under the transformation
. 2 i z w ? ?

Sketch the region and its image.
07
(b)
Show that
? ?
2 3
3 2 , xy x x y x u ? ? ?
is harmonic in some domain D and find a
harmonic conjugate of
? ?. , y x u

07
OR
(b) If ? ( ? ) is an analytic function of z, show that
(
? ?
| ? ( ? ) | )
2
+ (
? ?
| ? ( ? ) | )
2
= | ? ?
( ? ) |
2

07

Q.3 (a)
Evaluate ? ? 2
? 2 + ? 0
along the line ? =
? 2
?
07
(b) Evaluate:
1. ?
? ? ? 3
? , over the contour ? , where ? is the circle | ? | = 1 .
2. ?
? ? ? ( 1 ? ? )
3
? , counterclockwise over C, where C: | ? | = 2
3. ?
? ? ( ? ? 1 ) ( ? ? 3 )
? , counterclockwise over C, where C: | ? | = 2
07
OR
Q.3 (a)
Determine the Laurent series expansion of ? ( ? ) =
1
( ? + 1 ) ( ? + 3 )
valid for
a) | ? | < 1 b) 1 < | ? | < 3
07
(b) Using Newton?s divided difference formula, compute ? ( 10 . 5 ) from the
following data:
x: 10 11 13 17
f(x): 2.3026 2.3979 2.5649 2.8332

07

Q.4 (a) Find a real root of the equation ? 3
+ 4 ? 2
? 1 = 0, lies between 0 and 1 by using
bisection method correct to decimal places.
07
(b)
Evaluate
? ?
?
?
3
0
1 x
dx
with n=6 by using Simpson?s 3/8 rule and hence calculate
ln 2.

07
2
OR
Q.4 (a) Solve the following system of equation using partial pivoting by Gauss
Elimination method.
26 8 2 6
8 2 5 3
7 2 8
3 2 1
3 2 1
3 2
? ? ?
? ? ?
? ? ?
x x x
x x x
x x

07
(b) Solve the following system of equations by using Gauss-Seidel method.
6 10 ; 6 10 ; 6 10 ? ? ? ? ? ? ? ? ? z y x z y x z y x

07

Q.5 (a) Using the power method, find the largest eigenvalue of the matrix
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
2 1 0
1 2 1
0 1 2
A

07
(b) Apply Runge-Kutta fourth order method to find an approximation value of y
when x=0.1 in step of 0.1 if ? ? 1 0 ,
2
? ? ? y y x
dx
dy

07
OR
Q.5 (a)
Evaluate the integral
? ?
?
?
1
0
1 x
dx
, by Gauss three point quadrature formula.
07
(b)
Solve the differential equation ? ? , 1 0 ; 0 ? ? ? y xy
dx
dy
from 0 ? x to 25 . 0 ? x using
Euler?s method taking step size 0.05.
07

*************
FirstRanker.com - FirstRanker's Choice

This post was last modified on 20 February 2020

whatsapp