Download VTU B-Tech/B.E 2019 June-July 1st And 2nd Semester 2015 Jan 2014 Dec 10MAT21 Engineering Mathematics Question Paper

Download VTU ((Visvesvaraya Technological University) B.E/B-Tech 2019 July ( Bachelor of Engineering) First & Second Semester (1st Semester & 2nd Semester) 2015 Jan 2014 Dec 10MAT21 Engineering Mathematics Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

PDF Eraser Free
USN
10MAT21
F
g
? 4-1
Second Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics -
Time: 3 hrs.
(.1
Cd
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
CL.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
-0
PART ? A
1 a. ,Choose the correct answers for the following : (04 Marks)
1) A differential equation of the first order but of higher degree, solvable for x, has the
solution as:
A) F(y, p, c) = 0 B) F(x, p, c) C) F(x, y, c) = 0 D) CI, C2) = 0
ii) If xy 4
-
C = C
2
X is the general solution of a differential equation then its singular
solution is
A) y = x
iii) The general solution of Clairant's equation is,
A) y = Cf (x) + f(C) . B) y = Cx + f(C) C) x = Cf(y) + f(C) D) x = Cy +g(C)
iv) The general solution of p
2
?7p +12 = 0 is,
A) (y ?3x ? c)(y ?4x ?c) = 0
C) (3x c)(4x ? c)
b. Solve : xp
2
?(2x +3y)p +6y = 0.
C. Solve : y =3x +logp
d. Obtain the general solution and the singular solution of the equation
Clairant's equation.
Choose the correct answers for the following :
i) The particular integral of (D
2
+ a
2
)y = sin ax is,
A)
? xcosax
B) C)
xcosax x sin ax D) ? x sin ax
2a 2a 2a 2a
ii) The solution of the differential equation (D
4
? 5D
2
+4)y = 0 is,
A) y =C
i
e' +C
2
e
-
B) y= (C
I
+C,x+C
3
x
2
+C,x
3)e2x
C) y = C
I
cos x +C
2
sin x + C
3
cos 2x + C
4
sin 2x
D) None of these
iii) The particular integral of (D ? 1)
2
y --.3ex is,
A) --xex B) --
3
X
2
e
x
C)
?
3
2
x
2
ex D) ?x
-
ex
2 2 2 3
iv) The roots of auxiliary equation of D' (D
2
+ 2D)
2
y = 0 are:
Max. Marks:100
B) y=-x C) 4x
2
y+1=0 D) 4x
2
y-1=0
14
?)
B) (y ? c)(x ?c) = 0
D) (y +3x + c)(y ?4x ? c) = 0
(05 Marks)
(05 Marks)
xp
3
yp
2
+1 = 0 as
(06 Marks)
(04 Marks)
+C
3
e
2
x +C
4
e
-2
x
d.
A) 0,0,0,0,2,2 B) 0,0,0,0,-2,-2
b. Solve : (D
2
?2D +1)y = xex + x
c.
Solve : (D
2
? 4D + 4)y = e
2
x + cos 2x + 4 .
Solve : ?
dx
-7x + y = 0, ?
dy
-2x ?5y = O.
dt dt
C) 0,0,2,2,-2,-2 D) 2,2,2,2,0,0
(05 Marks)
(05 Marks)
(06 Marks)
1 of 4
FirstRanker.com - FirstRanker's Choice
PDF Eraser Free
USN
10MAT21
F
g
? 4-1
Second Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics -
Time: 3 hrs.
(.1
Cd
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
CL.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
-0
PART ? A
1 a. ,Choose the correct answers for the following : (04 Marks)
1) A differential equation of the first order but of higher degree, solvable for x, has the
solution as:
A) F(y, p, c) = 0 B) F(x, p, c) C) F(x, y, c) = 0 D) CI, C2) = 0
ii) If xy 4
-
C = C
2
X is the general solution of a differential equation then its singular
solution is
A) y = x
iii) The general solution of Clairant's equation is,
A) y = Cf (x) + f(C) . B) y = Cx + f(C) C) x = Cf(y) + f(C) D) x = Cy +g(C)
iv) The general solution of p
2
?7p +12 = 0 is,
A) (y ?3x ? c)(y ?4x ?c) = 0
C) (3x c)(4x ? c)
b. Solve : xp
2
?(2x +3y)p +6y = 0.
C. Solve : y =3x +logp
d. Obtain the general solution and the singular solution of the equation
Clairant's equation.
Choose the correct answers for the following :
i) The particular integral of (D
2
+ a
2
)y = sin ax is,
A)
? xcosax
B) C)
xcosax x sin ax D) ? x sin ax
2a 2a 2a 2a
ii) The solution of the differential equation (D
4
? 5D
2
+4)y = 0 is,
A) y =C
i
e' +C
2
e
-
B) y= (C
I
+C,x+C
3
x
2
+C,x
3)e2x
C) y = C
I
cos x +C
2
sin x + C
3
cos 2x + C
4
sin 2x
D) None of these
iii) The particular integral of (D ? 1)
2
y --.3ex is,
A) --xex B) --
3
X
2
e
x
C)
?
3
2
x
2
ex D) ?x
-
ex
2 2 2 3
iv) The roots of auxiliary equation of D' (D
2
+ 2D)
2
y = 0 are:
Max. Marks:100
B) y=-x C) 4x
2
y+1=0 D) 4x
2
y-1=0
14
?)
B) (y ? c)(x ?c) = 0
D) (y +3x + c)(y ?4x ? c) = 0
(05 Marks)
(05 Marks)
xp
3
yp
2
+1 = 0 as
(06 Marks)
(04 Marks)
+C
3
e
2
x +C
4
e
-2
x
d.
A) 0,0,0,0,2,2 B) 0,0,0,0,-2,-2
b. Solve : (D
2
?2D +1)y = xex + x
c.
Solve : (D
2
? 4D + 4)y = e
2
x + cos 2x + 4 .
Solve : ?
dx
-7x + y = 0, ?
dy
-2x ?5y = O.
dt dt
C) 0,0,2,2,-2,-2 D) 2,2,2,2,0,0
(05 Marks)
(05 Marks)
(06 Marks)
1 of 4
b.
c.
Solve (3x + 2)
2
y" +3(3x + 2)y
l
?36y = 8x
2
+ 4x + 1
Solve : (D
2
+a
2
)y = sec ax by method of variation of parameters.
d.
Solve : y" + xy' + y = 0 in series solution.
PDF Eraser Free
1OMAT21
3 a. Choose the correct answers for the following : (04 Marks)
i) The complementary function of x
2
y" ? 3xy' + 4y = x is:
A) (C
I
+ C
2
log x)x
2

C) C
I
+C
2
x
B) (C
1
+ C
2
x)e
2
x
C
D) 1+ C4
x x
g
2x +1)
B) (D
2
? 4D + 4)y = 2e
2
z
D) None of.these
2x
2
y" ? xy' 4- (1? X
2
)y = 0, we assume the
r-1
a. Choose the correct answers for the following : (04 Marks)
i) 2z = ?+ y ? , 31
X
2
a
2
b
2
'
2
d' e arbitrary constants is a solution of:
-
40e '
A) 2z=p
2
x+qy .- B) 2z =px+q
2
y C) 2z = px + qy D) None of these
Trrauxiliary equations of Lagrange's linear equation Pp + Qq = R are:
ii) By the method of variation parameters, the value of 'W' is called,
A) Euler's function B) Wronskian of the function
C) Demorgan's function D) Cauchy's function
iii) The equation (2x +1)
2
y" ?6(2x +1)y' +16y = 8(2x +1)
2
by putting
with D = reduces to
dz
A) (D
2
+ 4D + 4)y = 3e
2
z
C) (D
2
?4D +4)y = 0
To find the series solution for the equation
solution as,
iv)
A) y= Ea
r
x S) y=Ea
r+i
xr
+1
r
_
r=1:1 r=0
=Ea
r
x
K
"
(05 Marks)
(05 Marks)
(06 Marks)
A
dx dy dz
B
dx dy dz
t-k) ? = ? ? .D) ? = ? = ? )
P Q R p q R
iii) General solution of the equation
a2z
?
ax2
= x + y is,
dx dy dz
x y z
D) ?
dx
+?
dy
+ ?
dz
= 0
x y z
A)
?
x3
+
x
+ f(y)+ g(y)
6 2
B)
?
x3
-
x 2y
+ f(y) + yg(y)
6 2
x3
-
x2y
+ xf(y)+ g(y) D)
x3
+?
x2
C) -+
y
+ xf(y) + yg(y)
6 2 6 2
iv) Suitable set of multipliers to solve x
2
(y ? z)p+ y
2
(z ? x)q = z
2
(X - y) is,
A) (0, 1, 1) B) (x, y, z) C) (0,1,1) D) 1,1,1)
x y x y z
b.
Form a partial differential equation by eliminating arbitrary function from the relation,
(1)(xy+z
2
,x+y+z)=0 (05 Marks)
c. Solve : (y
2
+z
2
)p+ x(yq ? z)= 0 (05 Marks)
d.
Solve by the method of separation of variables ?
82z
? 2?
az
+?
az
= 0 (06 Marks)
ax
2
ax ay
2 of 4
FirstRanker.com - FirstRanker's Choice
PDF Eraser Free
USN
10MAT21
F
g
? 4-1
Second Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics -
Time: 3 hrs.
(.1
Cd
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
CL.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
-0
PART ? A
1 a. ,Choose the correct answers for the following : (04 Marks)
1) A differential equation of the first order but of higher degree, solvable for x, has the
solution as:
A) F(y, p, c) = 0 B) F(x, p, c) C) F(x, y, c) = 0 D) CI, C2) = 0
ii) If xy 4
-
C = C
2
X is the general solution of a differential equation then its singular
solution is
A) y = x
iii) The general solution of Clairant's equation is,
A) y = Cf (x) + f(C) . B) y = Cx + f(C) C) x = Cf(y) + f(C) D) x = Cy +g(C)
iv) The general solution of p
2
?7p +12 = 0 is,
A) (y ?3x ? c)(y ?4x ?c) = 0
C) (3x c)(4x ? c)
b. Solve : xp
2
?(2x +3y)p +6y = 0.
C. Solve : y =3x +logp
d. Obtain the general solution and the singular solution of the equation
Clairant's equation.
Choose the correct answers for the following :
i) The particular integral of (D
2
+ a
2
)y = sin ax is,
A)
? xcosax
B) C)
xcosax x sin ax D) ? x sin ax
2a 2a 2a 2a
ii) The solution of the differential equation (D
4
? 5D
2
+4)y = 0 is,
A) y =C
i
e' +C
2
e
-
B) y= (C
I
+C,x+C
3
x
2
+C,x
3)e2x
C) y = C
I
cos x +C
2
sin x + C
3
cos 2x + C
4
sin 2x
D) None of these
iii) The particular integral of (D ? 1)
2
y --.3ex is,
A) --xex B) --
3
X
2
e
x
C)
?
3
2
x
2
ex D) ?x
-
ex
2 2 2 3
iv) The roots of auxiliary equation of D' (D
2
+ 2D)
2
y = 0 are:
Max. Marks:100
B) y=-x C) 4x
2
y+1=0 D) 4x
2
y-1=0
14
?)
B) (y ? c)(x ?c) = 0
D) (y +3x + c)(y ?4x ? c) = 0
(05 Marks)
(05 Marks)
xp
3
yp
2
+1 = 0 as
(06 Marks)
(04 Marks)
+C
3
e
2
x +C
4
e
-2
x
d.
A) 0,0,0,0,2,2 B) 0,0,0,0,-2,-2
b. Solve : (D
2
?2D +1)y = xex + x
c.
Solve : (D
2
? 4D + 4)y = e
2
x + cos 2x + 4 .
Solve : ?
dx
-7x + y = 0, ?
dy
-2x ?5y = O.
dt dt
C) 0,0,2,2,-2,-2 D) 2,2,2,2,0,0
(05 Marks)
(05 Marks)
(06 Marks)
1 of 4
b.
c.
Solve (3x + 2)
2
y" +3(3x + 2)y
l
?36y = 8x
2
+ 4x + 1
Solve : (D
2
+a
2
)y = sec ax by method of variation of parameters.
d.
Solve : y" + xy' + y = 0 in series solution.
PDF Eraser Free
1OMAT21
3 a. Choose the correct answers for the following : (04 Marks)
i) The complementary function of x
2
y" ? 3xy' + 4y = x is:
A) (C
I
+ C
2
log x)x
2

C) C
I
+C
2
x
B) (C
1
+ C
2
x)e
2
x
C
D) 1+ C4
x x
g
2x +1)
B) (D
2
? 4D + 4)y = 2e
2
z
D) None of.these
2x
2
y" ? xy' 4- (1? X
2
)y = 0, we assume the
r-1
a. Choose the correct answers for the following : (04 Marks)
i) 2z = ?+ y ? , 31
X
2
a
2
b
2
'
2
d' e arbitrary constants is a solution of:
-
40e '
A) 2z=p
2
x+qy .- B) 2z =px+q
2
y C) 2z = px + qy D) None of these
Trrauxiliary equations of Lagrange's linear equation Pp + Qq = R are:
ii) By the method of variation parameters, the value of 'W' is called,
A) Euler's function B) Wronskian of the function
C) Demorgan's function D) Cauchy's function
iii) The equation (2x +1)
2
y" ?6(2x +1)y' +16y = 8(2x +1)
2
by putting
with D = reduces to
dz
A) (D
2
+ 4D + 4)y = 3e
2
z
C) (D
2
?4D +4)y = 0
To find the series solution for the equation
solution as,
iv)
A) y= Ea
r
x S) y=Ea
r+i
xr
+1
r
_
r=1:1 r=0
=Ea
r
x
K
"
(05 Marks)
(05 Marks)
(06 Marks)
A
dx dy dz
B
dx dy dz
t-k) ? = ? ? .D) ? = ? = ? )
P Q R p q R
iii) General solution of the equation
a2z
?
ax2
= x + y is,
dx dy dz
x y z
D) ?
dx
+?
dy
+ ?
dz
= 0
x y z
A)
?
x3
+
x
+ f(y)+ g(y)
6 2
B)
?
x3
-
x 2y
+ f(y) + yg(y)
6 2
x3
-
x2y
+ xf(y)+ g(y) D)
x3
+?
x2
C) -+
y
+ xf(y) + yg(y)
6 2 6 2
iv) Suitable set of multipliers to solve x
2
(y ? z)p+ y
2
(z ? x)q = z
2
(X - y) is,
A) (0, 1, 1) B) (x, y, z) C) (0,1,1) D) 1,1,1)
x y x y z
b.
Form a partial differential equation by eliminating arbitrary function from the relation,
(1)(xy+z
2
,x+y+z)=0 (05 Marks)
c. Solve : (y
2
+z
2
)p+ x(yq ? z)= 0 (05 Marks)
d.
Solve by the method of separation of variables ?
82z
? 2?
az
+?
az
= 0 (06 Marks)
ax
2
ax ay
2 of 4
B) r(--
1
) C) r
2
r)
2
is:
D) r(? ?
3
)
2
A) If ?
1
)
2
iv) The value of p(5, 3) + p(3, 5)
2
Show that 1
de
x sin Ode = TE
0
d.
sin 0
0

PDF Eraser Free
10MAT21
PART? B
a. Choose the correct answers for the following :
2x
i) f f(X y)dydx =
as
A) 3 B) 4 C) 5
2 3 2
ii) if f Xy
2
zdzdydx =
oi l
A) 36 B) 16 C) 26
iii) The integral 21
2
dx is,
(04 Marks)
D) 6
D) 46
A)
2

?
35
B) -
3
-
5
4
C) 3
35
r
.?
4 Li)
35
b. Evaluate fi
.

z

xy(x + y)dydx taken over the area between
I x+z
y = 'x and y = x. (M5 harks)
C. Evaluate : 1 1 1(x + y + z)dydxdz
-1 0 x-z
. 0 (05 Marks)
i ?
(06 Marks)
(04 Marks)
volume integral
6 a. Choose the correct answers for the following :
i) Gauss Divergence theorem is a relation between:
A) a line integral and a surface integral B) a surface integral and a
C) a line integral and a volume integral D) two volume integrals
y
ill.
1 ii) f Mdx + Ndy is also equal to,
c
R.
er(aN am'
zIxd c) jj y
ax ay
0
0
A) 1
.
1
-(am _aN)
cixdy

ay ax
B) f f
a
M
+
dxdy
R aY ax
aN
am
if( + dxdy
R OX ay
iii) Using the following integral, work done by a force F can be calculated:
A) Surface integral B) Volume integral C) Both (A) and (B) D) Line integral
iv) If F = x
2
i + xyj then the value of SF. dr from (0, 0) to (1, 1) along the line y ? x is,
A) 2 / 3 B) 3 / 2 C) 1 / 3 D) 112
b. Find the area between the parabolae, y
2
= 4x and x
2
= Lly with the help of Green's theorem
in a plane. (05 Marks)
c. Evaluate f xydx + xy
2
dy by Stoke's theorem where C is the square in the x-y plane with
vertices (1, 0), (-1, 0), (0, 1) and (0, -1) (05 Marks)
d. Evaluate HF.fids given F = xi + yj + zk over the sphere x
2
+ y
2
+ z
Z
= a
2
by using Gauss
divergence theorem. (06 Marks)
3 of 4
FirstRanker.com - FirstRanker's Choice
PDF Eraser Free
USN
10MAT21
F
g
? 4-1
Second Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics -
Time: 3 hrs.
(.1
Cd
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
CL.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
-0
PART ? A
1 a. ,Choose the correct answers for the following : (04 Marks)
1) A differential equation of the first order but of higher degree, solvable for x, has the
solution as:
A) F(y, p, c) = 0 B) F(x, p, c) C) F(x, y, c) = 0 D) CI, C2) = 0
ii) If xy 4
-
C = C
2
X is the general solution of a differential equation then its singular
solution is
A) y = x
iii) The general solution of Clairant's equation is,
A) y = Cf (x) + f(C) . B) y = Cx + f(C) C) x = Cf(y) + f(C) D) x = Cy +g(C)
iv) The general solution of p
2
?7p +12 = 0 is,
A) (y ?3x ? c)(y ?4x ?c) = 0
C) (3x c)(4x ? c)
b. Solve : xp
2
?(2x +3y)p +6y = 0.
C. Solve : y =3x +logp
d. Obtain the general solution and the singular solution of the equation
Clairant's equation.
Choose the correct answers for the following :
i) The particular integral of (D
2
+ a
2
)y = sin ax is,
A)
? xcosax
B) C)
xcosax x sin ax D) ? x sin ax
2a 2a 2a 2a
ii) The solution of the differential equation (D
4
? 5D
2
+4)y = 0 is,
A) y =C
i
e' +C
2
e
-
B) y= (C
I
+C,x+C
3
x
2
+C,x
3)e2x
C) y = C
I
cos x +C
2
sin x + C
3
cos 2x + C
4
sin 2x
D) None of these
iii) The particular integral of (D ? 1)
2
y --.3ex is,
A) --xex B) --
3
X
2
e
x
C)
?
3
2
x
2
ex D) ?x
-
ex
2 2 2 3
iv) The roots of auxiliary equation of D' (D
2
+ 2D)
2
y = 0 are:
Max. Marks:100
B) y=-x C) 4x
2
y+1=0 D) 4x
2
y-1=0
14
?)
B) (y ? c)(x ?c) = 0
D) (y +3x + c)(y ?4x ? c) = 0
(05 Marks)
(05 Marks)
xp
3
yp
2
+1 = 0 as
(06 Marks)
(04 Marks)
+C
3
e
2
x +C
4
e
-2
x
d.
A) 0,0,0,0,2,2 B) 0,0,0,0,-2,-2
b. Solve : (D
2
?2D +1)y = xex + x
c.
Solve : (D
2
? 4D + 4)y = e
2
x + cos 2x + 4 .
Solve : ?
dx
-7x + y = 0, ?
dy
-2x ?5y = O.
dt dt
C) 0,0,2,2,-2,-2 D) 2,2,2,2,0,0
(05 Marks)
(05 Marks)
(06 Marks)
1 of 4
b.
c.
Solve (3x + 2)
2
y" +3(3x + 2)y
l
?36y = 8x
2
+ 4x + 1
Solve : (D
2
+a
2
)y = sec ax by method of variation of parameters.
d.
Solve : y" + xy' + y = 0 in series solution.
PDF Eraser Free
1OMAT21
3 a. Choose the correct answers for the following : (04 Marks)
i) The complementary function of x
2
y" ? 3xy' + 4y = x is:
A) (C
I
+ C
2
log x)x
2

C) C
I
+C
2
x
B) (C
1
+ C
2
x)e
2
x
C
D) 1+ C4
x x
g
2x +1)
B) (D
2
? 4D + 4)y = 2e
2
z
D) None of.these
2x
2
y" ? xy' 4- (1? X
2
)y = 0, we assume the
r-1
a. Choose the correct answers for the following : (04 Marks)
i) 2z = ?+ y ? , 31
X
2
a
2
b
2
'
2
d' e arbitrary constants is a solution of:
-
40e '
A) 2z=p
2
x+qy .- B) 2z =px+q
2
y C) 2z = px + qy D) None of these
Trrauxiliary equations of Lagrange's linear equation Pp + Qq = R are:
ii) By the method of variation parameters, the value of 'W' is called,
A) Euler's function B) Wronskian of the function
C) Demorgan's function D) Cauchy's function
iii) The equation (2x +1)
2
y" ?6(2x +1)y' +16y = 8(2x +1)
2
by putting
with D = reduces to
dz
A) (D
2
+ 4D + 4)y = 3e
2
z
C) (D
2
?4D +4)y = 0
To find the series solution for the equation
solution as,
iv)
A) y= Ea
r
x S) y=Ea
r+i
xr
+1
r
_
r=1:1 r=0
=Ea
r
x
K
"
(05 Marks)
(05 Marks)
(06 Marks)
A
dx dy dz
B
dx dy dz
t-k) ? = ? ? .D) ? = ? = ? )
P Q R p q R
iii) General solution of the equation
a2z
?
ax2
= x + y is,
dx dy dz
x y z
D) ?
dx
+?
dy
+ ?
dz
= 0
x y z
A)
?
x3
+
x
+ f(y)+ g(y)
6 2
B)
?
x3
-
x 2y
+ f(y) + yg(y)
6 2
x3
-
x2y
+ xf(y)+ g(y) D)
x3
+?
x2
C) -+
y
+ xf(y) + yg(y)
6 2 6 2
iv) Suitable set of multipliers to solve x
2
(y ? z)p+ y
2
(z ? x)q = z
2
(X - y) is,
A) (0, 1, 1) B) (x, y, z) C) (0,1,1) D) 1,1,1)
x y x y z
b.
Form a partial differential equation by eliminating arbitrary function from the relation,
(1)(xy+z
2
,x+y+z)=0 (05 Marks)
c. Solve : (y
2
+z
2
)p+ x(yq ? z)= 0 (05 Marks)
d.
Solve by the method of separation of variables ?
82z
? 2?
az
+?
az
= 0 (06 Marks)
ax
2
ax ay
2 of 4
B) r(--
1
) C) r
2
r)
2
is:
D) r(? ?
3
)
2
A) If ?
1
)
2
iv) The value of p(5, 3) + p(3, 5)
2
Show that 1
de
x sin Ode = TE
0
d.
sin 0
0

PDF Eraser Free
10MAT21
PART? B
a. Choose the correct answers for the following :
2x
i) f f(X y)dydx =
as
A) 3 B) 4 C) 5
2 3 2
ii) if f Xy
2
zdzdydx =
oi l
A) 36 B) 16 C) 26
iii) The integral 21
2
dx is,
(04 Marks)
D) 6
D) 46
A)
2

?
35
B) -
3
-
5
4
C) 3
35
r
.?
4 Li)
35
b. Evaluate fi
.

z

xy(x + y)dydx taken over the area between
I x+z
y = 'x and y = x. (M5 harks)
C. Evaluate : 1 1 1(x + y + z)dydxdz
-1 0 x-z
. 0 (05 Marks)
i ?
(06 Marks)
(04 Marks)
volume integral
6 a. Choose the correct answers for the following :
i) Gauss Divergence theorem is a relation between:
A) a line integral and a surface integral B) a surface integral and a
C) a line integral and a volume integral D) two volume integrals
y
ill.
1 ii) f Mdx + Ndy is also equal to,
c
R.
er(aN am'
zIxd c) jj y
ax ay
0
0
A) 1
.
1
-(am _aN)
cixdy

ay ax
B) f f
a
M
+
dxdy
R aY ax
aN
am
if( + dxdy
R OX ay
iii) Using the following integral, work done by a force F can be calculated:
A) Surface integral B) Volume integral C) Both (A) and (B) D) Line integral
iv) If F = x
2
i + xyj then the value of SF. dr from (0, 0) to (1, 1) along the line y ? x is,
A) 2 / 3 B) 3 / 2 C) 1 / 3 D) 112
b. Find the area between the parabolae, y
2
= 4x and x
2
= Lly with the help of Green's theorem
in a plane. (05 Marks)
c. Evaluate f xydx + xy
2
dy by Stoke's theorem where C is the square in the x-y plane with
vertices (1, 0), (-1, 0), (0, 1) and (0, -1) (05 Marks)
d. Evaluate HF.fids given F = xi + yj + zk over the sphere x
2
+ y
2
+ z
Z
= a
2
by using Gauss
divergence theorem. (06 Marks)
3 of 4
c.
Find +
-li
ft sin 3t
0
D) _
1
s
2 s
2
+ 4
7 )
,
Potd
,

e
-4s

s - 3
D) e'
PDF Eraser Free
10MAT21
a. Choose the correct answers for the following : (04 Marks)
i) If L{f(t)} = F(s) then L{
f
M is,
A)
IF(ods
B) 1F(s)ds
C) IF(s)ds D) 1F(s)ds
0
ii)
If L
tcos at - cos bt}
__ leg
1 (s
2
+13
2

- ?) then L{
sin 2 t
1 .
t 2 s' +a
2
t
A) Ilog(
s2
+ 4)
B)
1 log
s2 +
1
C) !
s2
log(
s

4 s
2
2 s
2
4 + 4
iii) L{e
3I
H(t -4)1=
e
12-4s
e
12-4s
e
12+4s
A} B) C)
s + 3 s -3 s +3
iv) 4'6(t- a)}=
A) (-a)
t,
e' B) aneas C) ane
-
as
b. Find the Laplace transform of t
5
e
4t
cosh3t. (05 Marks)
(05 Marks)
(06 Marks)
(04 Marks)
E, 0 < t <
loomk. li Oak
d. Given f(t) =
2
where gt+a) - go
E
, show that Ltf(t)i= ?tanh ?).
, as
? E, ?
a
?t *
* - s 4
2
8 a. Choose the correct answer for th ?flowing :
?
et -
1
+1
2 6
t2 1+t Dh2e-.(14
0
)
- 6) 2 6
i)
tl
e
' (-
1
B)
2 6
ii} 1:4
s
+ ?
(s - 4
A)
1
'
t

iii) L
-1
{
2
s

s +5
A) sin it
e
4 t ?
e
-3t
m e
-4 t _
e
-3t
B) 1 ?e4t
C)
t t t
B)
7
1
cos j t C)
1
cos5t
5
D) cos ,5 t
l[s
2
+
S
a
2
y }
iv) L
-I
,
N
, =
A) t sin at B) t cos at / 2a C) t sin at / 2a D) tcosat
{ b. Find L
-I s 2
-
+4
s(s + 4)(s ? 4)
1(s ? 1)
1
0
2
+ 0}
c. Find L'
by using convolution theorem.
d.
Solve by using Laplace transform y"(t)+ y(t) = 0 ; y(0) = 2, y(Tr/ 2)=1
* * * * *
(05 Marks)
(05 Marks)
(06 Marks)
4 of 4
FirstRanker.com - FirstRanker's Choice

This post was last modified on 01 January 2020

whatsapp