Download GTU BE/B.Tech 2019 Winter 3rd Sem Old 130001 Mathematics Iii Question Paper

Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Winter 3rd Sem Old 130001 Mathematics Iii Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?III (Old) EXAMINATION ? WINTER 2019
Subject Code: 130001 Date: 22/11/2019

Subject Name: Mathematics-III
Time: 02:30 PM TO 05:30 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1
(a)
Obtain Fourier series to represent
2
2
) (
?
?
?
?
?
? ?
?
x
x f
?
in the interval 0 < x < ? 2
.


07
(b) Using Laplace Transform solve the given IVP.
1 ) 0 ( ' , 1 ) 0 ( , ' ' ? ? ? ? y y t y y .
07

Q.2 (a) Solve by Method of Variation of Parameters. . 2 sec 4 ' ' x y y ? ?

07
(b)
Solve 1 4 3 36 ' ) 2 3 ( 3 ' ' ) 2 3 (
2 2
? ? ? ? ? ? ? x x y y x y x .
07
OR
(b) Obtain series solution of . 0 ' ' ? ?xy y 07

Q.3 (a)
(1) Solve linear differential equation
2
2 2
x
e xy
dx
dy
?
? ? .

03

(2) Solve . ) (log log
2
2
y
x
y
x
x
y
dx
dy
? ?


04
(b) Using method of undermined co-efficient method to solve
. 3 25 10 ' 2 ' '
2
? ? ? ? x y y y
07
OR
Q.3 (a)
(1) Solve 0 ) 1 ( ) 1 (
2 2 2 2
? ? ? ? ? ? xdy xy y x ydx xy y x .
03

(2) Solve 0 ) ( ) 1 (
1
tan 2
? ? ? ?
?
dy e x dx y
y
.

04
(b) Using method of undermined co-efficient method to
solve x e x y y
x
2 sin 9 ' '
2
? ? ? ? .
07

Q.4
(a) (1) Find the inverse Laplace Transform of
) 3 )( 2 )( 1 (
16 3 5
2
? ? ?
? ?
s s s
s s
.
03



(2)Using convolution theorem, find the inverse Laplace transform of
2 2
) 5 4 (
2
? ?
?
s s
s
.




04
FirstRanker.com - FirstRanker's Choice
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?III (Old) EXAMINATION ? WINTER 2019
Subject Code: 130001 Date: 22/11/2019

Subject Name: Mathematics-III
Time: 02:30 PM TO 05:30 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1
(a)
Obtain Fourier series to represent
2
2
) (
?
?
?
?
?
? ?
?
x
x f
?
in the interval 0 < x < ? 2
.


07
(b) Using Laplace Transform solve the given IVP.
1 ) 0 ( ' , 1 ) 0 ( , ' ' ? ? ? ? y y t y y .
07

Q.2 (a) Solve by Method of Variation of Parameters. . 2 sec 4 ' ' x y y ? ?

07
(b)
Solve 1 4 3 36 ' ) 2 3 ( 3 ' ' ) 2 3 (
2 2
? ? ? ? ? ? ? x x y y x y x .
07
OR
(b) Obtain series solution of . 0 ' ' ? ?xy y 07

Q.3 (a)
(1) Solve linear differential equation
2
2 2
x
e xy
dx
dy
?
? ? .

03

(2) Solve . ) (log log
2
2
y
x
y
x
x
y
dx
dy
? ?


04
(b) Using method of undermined co-efficient method to solve
. 3 25 10 ' 2 ' '
2
? ? ? ? x y y y
07
OR
Q.3 (a)
(1) Solve 0 ) 1 ( ) 1 (
2 2 2 2
? ? ? ? ? ? xdy xy y x ydx xy y x .
03

(2) Solve 0 ) ( ) 1 (
1
tan 2
? ? ? ?
?
dy e x dx y
y
.

04
(b) Using method of undermined co-efficient method to
solve x e x y y
x
2 sin 9 ' '
2
? ? ? ? .
07

Q.4
(a) (1) Find the inverse Laplace Transform of
) 3 )( 2 )( 1 (
16 3 5
2
? ? ?
? ?
s s s
s s
.
03



(2)Using convolution theorem, find the inverse Laplace transform of
2 2
) 5 4 (
2
? ?
?
s s
s
.




04

(b)
(1) Find the Fourier Transform of the function
2
) (
ax
e x f
?
? .
04

(2) Evaluate dx e x
ax n
?
?
?
0
.
03
Q.4 (a)
(1) By using first shifting theorem, obtain the value of } ) 1 {(
2 t
e t L ? .

03

(2) Find
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
b s
a s
L log
1
.


04
(b)
(1)Find the Fourier Cosine transform of the function
?
?
?
?
? ?
?
a x
a x k
x f
0
0
) (
.

04



(2) Evaluate
?
2
0
cot
?
? ?d .
03

Q.5
(a)
Prove that (1) x
x
x J sin
2
) (
2
1
?
? (2) x
x
x J cos
2
) (
2
1
?
?
?



07
(b) A taut string of length l has its ends 0 ? x and l x ? fixed. The mid-point is
stretched to a small height and released from rest at time 0 ? t . Find the
displacement ) , ( t x u .
07
OR

Q.5
(a)
Show that
?
?
?
1
1
, 0 ) ( ) ( dx x P x P
n m
if n m ? and
?
?
?
?
?
1
1
2
....) 1 , 0 (
1 2
2
) ( n
n
dx x P
n
if
. n m ? (m, n being integers)


07
(b) Solve 0 ? ?
yy xx
u u which satisfies the boundary condition o y a u y u ? ? ) , ( ) , 0 (
for b y ? ? 0 and ) ( ) 0 , ( , 0 ) , ( x f x u b x u ? ? for . 0 a x ? ?
07

*************

FirstRanker.com - FirstRanker's Choice

This post was last modified on 20 February 2020

whatsapp