Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Winter 1st And 2nd Sem Old 110014 Calculus Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ? I & II (OLD) EXAMINATION ? WINTER 2019
Subject Code: 110014 Date: 17/01/2020
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a)
(i) Test the convergence of the sequence
2
2
2
nn
nn
? ?
?
?
?
.
03
(ii) Expand logx in powers of ( 1) x ? . 04
(b)
(i) Evaluate ? ?
cot
0
lim cos
x
x
x
?
03
(ii) Test the convergence of the series
1
1
sin
n
n
?
?
?
04
Q.2 (a)
(i) Evaluate
2
11
lim
2 log( 1)
x
xx
?
?
?
?
?
?
03
(ii) Determine the interval of convergence for the series
1
,0
2
n
n
n
x
x
?
?
?
?
04
(b)
Expand log cos
4
x
? ?
?
?
?
using Taylor`s theorem in ascending powers of x and
hence find the value of
0
log(cos48 ) correct up to three decimal places.
07
Q.3 (a)
(i) Evaluate
1 9
2
0
1
x
dx
x ?
?
03
(ii) Test the convergence of the improper integral
4
4
35
7
x
dx
x
?
?
?
?
04
(b)
(i) Show that
22
( , ) , ( , ) (0,0)
0, ( , ) (0,0)
xy
f x y x y
xy
xy
?
?
?
is continuous at origin.
04
(ii) If ,
xyz
ue ? show that ? ?
3
2 2 2
13
xyz
u
xyz x y z e
x y z
?
? ? ?
? ? ?
03
Q.4 (a)
If () u f r ? and
2 2 2 2
r x y z ? ? ? , prove that
222
2 2 2
2
( ) ( )
uuu
f r f r
x y z r
?
? ? ? ? ? ? ?
? ? ?
07
(b)
(i) If
,,
x y z
uf
y z x
?
?
?
?
, prove that
0
u u u
x y z
x y z
? ? ?
? ? ?
? ? ?
04
(ii) Find the equations of the tangent plane and normal line to the surface
22
2 z x y ? at the point (1,1,3)
03
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ? I & II (OLD) EXAMINATION ? WINTER 2019
Subject Code: 110014 Date: 17/01/2020
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a)
(i) Test the convergence of the sequence
2
2
2
nn
nn
? ?
?
?
?
.
03
(ii) Expand logx in powers of ( 1) x ? . 04
(b)
(i) Evaluate ? ?
cot
0
lim cos
x
x
x
?
03
(ii) Test the convergence of the series
1
1
sin
n
n
?
?
?
04
Q.2 (a)
(i) Evaluate
2
11
lim
2 log( 1)
x
xx
?
?
?
?
?
?
03
(ii) Determine the interval of convergence for the series
1
,0
2
n
n
n
x
x
?
?
?
?
04
(b)
Expand log cos
4
x
? ?
?
?
?
using Taylor`s theorem in ascending powers of x and
hence find the value of
0
log(cos48 ) correct up to three decimal places.
07
Q.3 (a)
(i) Evaluate
1 9
2
0
1
x
dx
x ?
?
03
(ii) Test the convergence of the improper integral
4
4
35
7
x
dx
x
?
?
?
?
04
(b)
(i) Show that
22
( , ) , ( , ) (0,0)
0, ( , ) (0,0)
xy
f x y x y
xy
xy
?
?
?
is continuous at origin.
04
(ii) If ,
xyz
ue ? show that ? ?
3
2 2 2
13
xyz
u
xyz x y z e
x y z
?
? ? ?
? ? ?
03
Q.4 (a)
If () u f r ? and
2 2 2 2
r x y z ? ? ? , prove that
222
2 2 2
2
( ) ( )
uuu
f r f r
x y z r
?
? ? ? ? ? ? ?
? ? ?
07
(b)
(i) If
,,
x y z
uf
y z x
?
?
?
?
, prove that
0
u u u
x y z
x y z
? ? ?
? ? ?
? ? ?
04
(ii) Find the equations of the tangent plane and normal line to the surface
22
2 z x y ? at the point (1,1,3)
03
2
Q.5 (a)
If
33
1
cos
xy
u
xy
?
? ?
?
?
?
?
,show that
(i)
2cot
uu
x y u
xy
?
? ? ?
?
(ii)
2 2 2
22
2 2 3
sin 2 sin 4cos
2
sin
u u u u u u
x xy y
x x y y u
? ? ? ?
? ? ?
? ? ? ?
07
(b)
(i) Trace the curve
33
3 , 0 x y axy a ? ? ?
04
(ii) Discuss the maxima and minima of the function
22
6 12 x y x ? ? ?
03
Q.6 (a)
(i) Evaluate
2
11
22
00
1
x
dxdy
xy
?
?
?
03
(ii) Evaluate
2
0
y
x
e dydx
?
?
?
,by changing the order of integration.
04
(b)
The temperature at any point ( , , ) x y z in space is
2
400 T xyz ? .Find the
highest temperature on the surface of unit sphere
2 2 2
1 x y z ? ? ? by the
method of Lagrange`s multipliers.
07
Q.7 (a)
Evaluate
22
( ) ,
R
x y dA ?
?
by changing the variables, where R is the region
lying in the first quadrant and bounded by the hyperbolas
2 2 2 2
1, 9, 2 x y x y xy ? ? ? ? ? and 4 xy ?
07
(b)
Evaluate
22
2
3
2 2 2
2
1
11
()
1 0 0
xy
x
x y z
e dxdydz
?
?
? ? ?
?
? ? ?
07
*************
FirstRanker.com - FirstRanker's Choice
This post was last modified on 20 February 2020