Download GTU BE/B.Tech 2019 Summer 1st Sem And 2nd Sem Old 110009 Maths Ii Question Paper

Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 1st Sem And 2nd Sem Old 110009 Maths Ii Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?I &II (OLD) EXAMINATION ? SUMMER-2019
Subject Code: 110009 Date: 01/06/2019

Subject Name: Maths - II

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

1. Attempt any five questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q-1 (a)
(i) Find the value of ? so that the equations
0 3 4
0 3
0 2 2
? ? ?
? ? ?
? ? ?
z y x
z y x
z y x
?
; have a non trivial solution.
4
(ii) Verify Cauchy-Schwarz inequality for the vectors ) 0 , 1 , 3 ( ? ? u , ). 3 , 1 , 2 ( ? ? v
3
(b) Solve the following equations by Gauss elimination and back substitution,
0 5 6 3
1 3 4 2
9 2
? ? ?
? ? ?
? ? ?
z y x
z y x
z y x

7
Q-2 (a)
(i) Obtain the reduced row echelon form of the matrix
?
?
?
?
?
?
?
?
?
?
?
?
8 4 7 3
4 3 4 2
3 1 2 1
2 2 3 1
.
4

(ii) Find the rank of the matrix, if
?
?
?
?
?
?
?
?
?
?
?
? ?
2 9 3 2
2 5 1 3
0 4 2 1
A .
3
(b)
Use row operation to find
1 ?
A , if
?
?
?
?
?
?
?
?
?
?
?
8 0 1
3 5 2
3 2 1
A .
7
Q-3 (a)
(i) Find the eigen values and eigen vectors of the matrix,
?
?
?
?
?
?
?
?
?
?
?
5 0 0
6 2 0
4 1 3
A .
4

(ii) Using Cayley-Hamilton theorem, find ,
2
A if
?
?
?
?
?
?
?
3 2
4 1
A .
3

(b)
Find a matrix P that diagonalizes
?
?
?
?
?
?
?
?
2 1
0 1
A and hence find .
10
A
7

Q-4 (a)
(i) Reduce ? ? ) 0 , 2 , 0 ( ), 3 , 4 , 0 ( ), 1 , 1 , 0 ( ), 0 , 0 , 1 ( ? ? ? S to obtain a basis for .
3
R 4

(ii) Determine whether or not the vectors ? ? ) 1 , 2 , 2 ( ), 2 , 1 , 2 ( ), 2 , 2 , 1 ( in
3
R are linearly
independent.

3
(b) Let ? ? ? ? , 0 , , | , ? ? ? y R y x y x V let . , ) , ( ), , ( R V d c b a ? ? ?
Define ) , ( ) , ( ) , ( d b c a d c b a ? ? ? ? and ) , ( ) , (
?
? ? b a b a ? ? . Prove that V is a vector space.


7
Q-5 (a)
(i) Show that the transformation , :
2 2
R R T ? where ) , 2 ( ) , ( y x y x y x T ? ? ? is a linear
transformation.
4

(ii) Express the quadratic form , 6 3 2 ) , (
2 2
xy y x y x Q ? ? ? in matrix notation. 3
FirstRanker.com - FirstRanker's Choice
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?I &II (OLD) EXAMINATION ? SUMMER-2019
Subject Code: 110009 Date: 01/06/2019

Subject Name: Maths - II

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

1. Attempt any five questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q-1 (a)
(i) Find the value of ? so that the equations
0 3 4
0 3
0 2 2
? ? ?
? ? ?
? ? ?
z y x
z y x
z y x
?
; have a non trivial solution.
4
(ii) Verify Cauchy-Schwarz inequality for the vectors ) 0 , 1 , 3 ( ? ? u , ). 3 , 1 , 2 ( ? ? v
3
(b) Solve the following equations by Gauss elimination and back substitution,
0 5 6 3
1 3 4 2
9 2
? ? ?
? ? ?
? ? ?
z y x
z y x
z y x

7
Q-2 (a)
(i) Obtain the reduced row echelon form of the matrix
?
?
?
?
?
?
?
?
?
?
?
?
8 4 7 3
4 3 4 2
3 1 2 1
2 2 3 1
.
4

(ii) Find the rank of the matrix, if
?
?
?
?
?
?
?
?
?
?
?
? ?
2 9 3 2
2 5 1 3
0 4 2 1
A .
3
(b)
Use row operation to find
1 ?
A , if
?
?
?
?
?
?
?
?
?
?
?
8 0 1
3 5 2
3 2 1
A .
7
Q-3 (a)
(i) Find the eigen values and eigen vectors of the matrix,
?
?
?
?
?
?
?
?
?
?
?
5 0 0
6 2 0
4 1 3
A .
4

(ii) Using Cayley-Hamilton theorem, find ,
2
A if
?
?
?
?
?
?
?
3 2
4 1
A .
3

(b)
Find a matrix P that diagonalizes
?
?
?
?
?
?
?
?
2 1
0 1
A and hence find .
10
A
7

Q-4 (a)
(i) Reduce ? ? ) 0 , 2 , 0 ( ), 3 , 4 , 0 ( ), 1 , 1 , 0 ( ), 0 , 0 , 1 ( ? ? ? S to obtain a basis for .
3
R 4

(ii) Determine whether or not the vectors ? ? ) 1 , 2 , 2 ( ), 2 , 1 , 2 ( ), 2 , 2 , 1 ( in
3
R are linearly
independent.

3
(b) Let ? ? ? ? , 0 , , | , ? ? ? y R y x y x V let . , ) , ( ), , ( R V d c b a ? ? ?
Define ) , ( ) , ( ) , ( d b c a d c b a ? ? ? ? and ) , ( ) , (
?
? ? b a b a ? ? . Prove that V is a vector space.


7
Q-5 (a)
(i) Show that the transformation , :
2 2
R R T ? where ) , 2 ( ) , ( y x y x y x T ? ? ? is a linear
transformation.
4

(ii) Express the quadratic form , 6 3 2 ) , (
2 2
xy y x y x Q ? ? ? in matrix notation. 3

(b)
Find the rank and nullity of the matrix
?
?
?
?
?
?
?
?
?
?
?
?
?
0 0 0
2 0 4
1 0 2
A
7
Q-6 (a)
(i) Find a basis for the orthogonal complement of the subset of
3
R spanned by the vectors
). 2 , 6 , 7 ( ), 4 , 4 , 5 ( ), 3 , 1 , 1 (
3 2 1
? ? ? ? ? ? ? v v v
4

(ii) Determine whether the linear transformation , :
3 2
R R T ? where
) , , ( ) , ( y x y x y x T ? ? is one-one.
3
(b)
Let
3
R have the Euclidean inner product. Use the Gram-Schmidt process to transform the
basis ? ? ) 1 , 2 , 1 ( ), 0 , 1 , 1 ( ), 1 , 1 , 1 ( ? ? S into an Orthonormal basis.

7
Q-7 (a)
(i) Prove that
?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
3 7 9 2
7 9 2 4 3
2 4 3 1
i i
i i
i i
A is a Hermitian matrix.
4

(ii) Let
2
R have the Euclidean inner product. Find the cosine of the angle ? between the
vectors ) 2 , 1 , 3 , 4 ( ? ? u and ). 3 , 2 , 1 , 2 ( ? ? v
3
(b) Find the least square solution of the linear system b AX ? and find the orthogonal
projection of b onto the column space of A , where
?
?
?
?
?
?
?
?
?
? ?
?
1 3
1 1
2 2
A ,
?
?
?
?
?
?
?
?
?
?
? ?
1
1
2
b
7


****************

FirstRanker.com - FirstRanker's Choice

This post was last modified on 20 February 2020

whatsapp