Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 1st Sem And 2nd Sem Old 110014 Calculus Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?I &II (OLD) EXAMINATION ? SUMMER-2019
Subject Code: 110014 Date: 06/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a) (i)
State Euler?s theorem on homogeneous function. If
?
?
?
?
?
?
?
?
?
?
?
?
y x
y x
u
3 3
1
tan , then
prove that u u
y
u
y
y x
u
xy
x
u
x 3 cos sin 2 2
2
2
2
2
2
2
2
?
?
?
?
? ?
?
?
?
?
05
(b) (i)
If
3 3 3 2
z x y xy u ? ? ? ? ,show that u
z
u
z
y
u
y
x
u
x 3 ?
?
?
?
?
?
?
?
?
03
(ii)
If ? ? xyz z y x u 3 ln
3 3 3
? ? ? ? , prove that
? ?
2
2
9
z y x
u
z y x
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
03
(c)
Determine whether
? ? ? ?
2 4
2
0 , 0 ,
lim
y x
y x
y x
?
?
exist or not? If they exist find the value of
the limit.
03
Q.2 (a) Find maxima and minima of the function
? ? 20 12 3 ,
3 3
? ? ? ? ? y x y x y x f
05
(b)
Expand y e
x 1
tan
?
about ? ? 1 , 1 up to second degree in ? ? 1 ? x and ? ? 1 ? y .
05
(c)
If ? ? sin , cos r y r x ? ? , find
? ?
? ? ? ,
,
r
y x
?
?
and
? ?
? ? y x
r
,
,
?
? ?
04
FirstRanker.com - FirstRanker's Choice
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?I &II (OLD) EXAMINATION ? SUMMER-2019
Subject Code: 110014 Date: 06/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a) (i)
State Euler?s theorem on homogeneous function. If
?
?
?
?
?
?
?
?
?
?
?
?
y x
y x
u
3 3
1
tan , then
prove that u u
y
u
y
y x
u
xy
x
u
x 3 cos sin 2 2
2
2
2
2
2
2
2
?
?
?
?
? ?
?
?
?
?
05
(b) (i)
If
3 3 3 2
z x y xy u ? ? ? ? ,show that u
z
u
z
y
u
y
x
u
x 3 ?
?
?
?
?
?
?
?
?
03
(ii)
If ? ? xyz z y x u 3 ln
3 3 3
? ? ? ? , prove that
? ?
2
2
9
z y x
u
z y x
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
03
(c)
Determine whether
? ? ? ?
2 4
2
0 , 0 ,
lim
y x
y x
y x
?
?
exist or not? If they exist find the value of
the limit.
03
Q.2 (a) Find maxima and minima of the function
? ? 20 12 3 ,
3 3
? ? ? ? ? y x y x y x f
05
(b)
Expand y e
x 1
tan
?
about ? ? 1 , 1 up to second degree in ? ? 1 ? x and ? ? 1 ? y .
05
(c)
If ? ? sin , cos r y r x ? ? , find
? ?
? ? ? ,
,
r
y x
?
?
and
? ?
? ? y x
r
,
,
?
? ?
04
Q.3 (a)
Expand
x
e
x
cos
in Maclaurin?s series.
05
(b) (i)
Evaluate
2
0
sin tan
lim
x
x x
x
?
?
.
02
(ii)
Find the values of a and b such that,
? ?
1
sin cos 1
lim
3
0
?
? ?
?
x
x b x a x
x
03
(c)
Using Taylor?s series find
3
12 . 27 correct to four decimal places.
04
Q.4 (a)
Trace the curve ? ? ? ? x a x x a y ? ? ? 3
2 2
05
(b) Trace the curve ? ? ? cos 1 ? ?a r 05
(c)
Using reduction formula evaluate ? ?
?
2
0
5
cos
?
dx i and ? ?
?
?
0
6
sin dx ii
04
Q.5 (a) (i)
Test the convergence of
?
?
?
?
1
2
1
1
n
n
02
(ii)
Test the convergence of
?
?
?1
2
3
n
n
n
03
(b)
Test the convergence of
?
?
?
?
1
2
n
n
ne
04
(c)
Obtain the reduction formula for
?
2
0
cos
?
xdx
n
05
Q.6 (a)
Evaluate
?
R
sin dA ? , where R the region is in the 1
st
quadrant. i.e. outside the
circle 2 ? r and inside the cardioids ? ? ? cos 1 2 ? ? r .
05
(b)
Evaluate by changing the order of integration
? ?
? 1
0
2
2
x
x
dydx xy
05
(c)
Find the volume bounded by cylinder 4
2 2
? ? y x and the planes 4 ? ? z y ,
0 ? z .
04
FirstRanker.com - FirstRanker's Choice
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?I &II (OLD) EXAMINATION ? SUMMER-2019
Subject Code: 110014 Date: 06/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a) (i)
State Euler?s theorem on homogeneous function. If
?
?
?
?
?
?
?
?
?
?
?
?
y x
y x
u
3 3
1
tan , then
prove that u u
y
u
y
y x
u
xy
x
u
x 3 cos sin 2 2
2
2
2
2
2
2
2
?
?
?
?
? ?
?
?
?
?
05
(b) (i)
If
3 3 3 2
z x y xy u ? ? ? ? ,show that u
z
u
z
y
u
y
x
u
x 3 ?
?
?
?
?
?
?
?
?
03
(ii)
If ? ? xyz z y x u 3 ln
3 3 3
? ? ? ? , prove that
? ?
2
2
9
z y x
u
z y x
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
03
(c)
Determine whether
? ? ? ?
2 4
2
0 , 0 ,
lim
y x
y x
y x
?
?
exist or not? If they exist find the value of
the limit.
03
Q.2 (a) Find maxima and minima of the function
? ? 20 12 3 ,
3 3
? ? ? ? ? y x y x y x f
05
(b)
Expand y e
x 1
tan
?
about ? ? 1 , 1 up to second degree in ? ? 1 ? x and ? ? 1 ? y .
05
(c)
If ? ? sin , cos r y r x ? ? , find
? ?
? ? ? ,
,
r
y x
?
?
and
? ?
? ? y x
r
,
,
?
? ?
04
Q.3 (a)
Expand
x
e
x
cos
in Maclaurin?s series.
05
(b) (i)
Evaluate
2
0
sin tan
lim
x
x x
x
?
?
.
02
(ii)
Find the values of a and b such that,
? ?
1
sin cos 1
lim
3
0
?
? ?
?
x
x b x a x
x
03
(c)
Using Taylor?s series find
3
12 . 27 correct to four decimal places.
04
Q.4 (a)
Trace the curve ? ? ? ? x a x x a y ? ? ? 3
2 2
05
(b) Trace the curve ? ? ? cos 1 ? ?a r 05
(c)
Using reduction formula evaluate ? ?
?
2
0
5
cos
?
dx i and ? ?
?
?
0
6
sin dx ii
04
Q.5 (a) (i)
Test the convergence of
?
?
?
?
1
2
1
1
n
n
02
(ii)
Test the convergence of
?
?
?1
2
3
n
n
n
03
(b)
Test the convergence of
?
?
?
?
1
2
n
n
ne
04
(c)
Obtain the reduction formula for
?
2
0
cos
?
xdx
n
05
Q.6 (a)
Evaluate
?
R
sin dA ? , where R the region is in the 1
st
quadrant. i.e. outside the
circle 2 ? r and inside the cardioids ? ? ? cos 1 2 ? ? r .
05
(b)
Evaluate by changing the order of integration
? ?
? 1
0
2
2
x
x
dydx xy
05
(c)
Find the volume bounded by cylinder 4
2 2
? ? y x and the planes 4 ? ? z y ,
0 ? z .
04
Q.7 (a)
Prove that
?
?
1
1
dx
x
p
, converges when 1 ? p and diverges when 1 ? p
05
(b) Use triple integral in cylindrical co-ordinate to find the volume of solid, bounded
above the hemisphere
2 2
25 y x z ? ? ? , below by plane xy ? and laterally by
the cylinder 9
2 2
? ? y x
05
(c) Find the volume of a cone with height cm 4 and radius of base cm 4 . Use the
method of slicing.
04
*************
FirstRanker.com - FirstRanker's Choice
This post was last modified on 20 February 2020