Download AKTU B-Tech 1st Sem 2018-2019 Mathematics Question Paper

Download AKTU (Dr. A.P.J. Abdul Kalam Technical University (AKTU), formerly Uttar Pradesh Technical University (UPTU)) B-Tech 1st Semester (First Semester) 2018-2019 Mathematics Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

Printed Pa cs: 03 1" Sub Code: KA8103
Paperldzl 19910. _] RollNo.I LI I I I I I I I I
B.Tech.
(SEM?I) THEORY EXAMINATION 2018?19
MATHEMATICS-I
T ime: 3 Hours Toral Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.
SECTIONA
1. Attempt all questions.
Qno. Question Marks (?0
a. _ . 2 2 2 2 l
Fmd the rank of the mamx 2 q 7
3 2 2
b. .. ,, . , . _ 3 ,3 a 2 3
Find the stdt10nanpmnt 0f f(x, y) ?x +y +3axv,a>0
C- If 21210039, y: rsinB, z: Zthen ?nd 5L? 6. LEAR? 2 3
6(x y?\
d. De?ne delV operator and gradient (2? 2 5 (?15?
9? If?=3x y- 1-32 ,?ndgr ?pointtl o. -2) 2 ?52!?
f.
, \3 ? 4
1 x 3. .
Evaluate J- E'; ex dxd?>5E~ ?(?63
g. If the eigen Values Oofig?f? A are 1 1 1. then ?nd the eigen ?vKIhe of 2 1
A + 2A + 31.
h. De?ne Rolle s Theo m 2 2
1' Ifu=x'_\ sin (y/\) then?ndx-?-+'1? . .V: 2 3
ax 8? ax
m?j
j. In RI? ? E and possible error in P. and I are 20%?d 10? /0 respectively, 2 3
then ?nd the error in R.
k. State the Tavlor 3 Theorem for two variql?s;\ 2 3
(.2
$10}; B
2. Attempt any rhree of the qu?h?iing:
Qno. \ Question ' Marks (70
a. Using Cayley- Hamilton theorem ?nd the inverse of the matrix A: 10 l
1 2 3?]
2 4 5?
3 5 6J
Also express the polynomial B: A8-11A7-4A"+A5+A4-11A5-3A3+2A+I
as a quadratic polynomial in A and hence ?nd B.
f?a?v?r?; Ki?y?m?i JHA i ?vQ?C-Bfi?i? 128157140 ? 117.55.2=?~12,?13?1

"X
b. If y = Sin(m sin"x), prove that : (1 - x2) ymz ? (2n + l)x yn+| ? (n2 - IO
m2)yn = 0 and ?nd yn at x = 0.
C. If u. v, w are the roots of the equationtx ?a)3 +(x ? b)? +(x ? c)3 = 0, '0?
then ?nd M
6(a,b.c)
d? 0000 2 2 IO
Evaluate I je?(x +y )dxdy by changmg to polar coordinates.
O 0
(D
2
Hence show that Ie_x dx = "?15-.
0 _
eh Verify the divergence theorem for 10
1:" :(x3 ?y:)-i +(y3 -zx)j+(z3 -xy)?, taken over the cube bounded by
planesx=0,y=0,z=0,x= l,y= 1,2: 1?
SECTION C
3. Attempt any one part of the following:
Q no. Question Marks
:1. 3 ?3 4 10
Find inverse employing elementary transformation A = 2 _3 4
' 0 ?1 1
b. 1 2 -I 4 to
Reduce the matrix A to its normal form when A = 2 4 3 4
I 2 3 4
V -l -2 6 -7
Hence ?nd the rank ofAA ,
4. Attempt any one part of the following:
Q nu. Question Marks
a. Ifsin" y = Zlogtx + n show that 10
(x + Uly?+2 +(2n + ?(x + Hy"+l +(n2 +4)yn = 0
b. Verify Lagrangc?s Mean vaIUe Theorem for the function f(x)=x? in '0
[? 2.2]
5. Attempt any one part of the following:
Q no Question Marks
at Find the maximum or minimum distance of the point (1. 2. -I) from the 10
sphere x 1 +y 2 +2 1 =24.
b' Ifu=cos"( x+y )thenshowthat x?ai+y?u?+lcotu=0 10
x 4h]; ax 6y 2

Qno.
Attempt any one part of the following:
Change the order of integration and then evaluate: I Ix y dydx,
Calculate the volume of the solid bounded by the surface x=0, F0?
x+y+z=l & z=0?
Attempt any one part of the following:
Prove {had}2 - :2 + 3y: ? 2x)? + (3x1 + 2xy)] + (3w - 2x2 + 22M} is both
Solenoidal and lrrotational.
Find the directional derivative of d) = 5ny ? Syzz + ?zzx at the point
D
910.
Question
Question
P(l, l, l) in the direction ofthe line
2 3?1:
0 5i
4
Marks
[0
Marks
CO
CO

This post was last modified on 29 January 2020

whatsapp