Download AKTU (Dr. A.P.J. Abdul Kalam Technical University (AKTU), formerly Uttar Pradesh Technical University (UPTU) B-Tech 3rd Semester (Third Semester) 2016-2017 NEC 303 Signal System Question Paper
(Following Paper ID and Roll No. to be ?lled in your l
Answer Books)
l?zlpcr ll): 2289407
. BEECH. . -
Regular Theory Examination (Odd Sem - III), 2016-17
SIGNAL & SYSTEM
Time : 3 Hours ' Max. Marks :?100
SECTION -A
1 . Atgempt all parts. All parts carry equal marks. Write
answer of each part in short. (10X2=20)
a) Verify whether the given system described by the
' equation is linear and time-invariant. x(t) = t2
b) ' Find the ?m?damental period Ofthe given signal.
lx(n) = sin[?:?n+ 1]
c) What is the relationship between Z transform and
Fourier transform. '
d) State convolution property of Z transform.
e) F ind the fourier transfonn of
x(t) = sin (cot)cos(a)t).
303/12/2016/6700 (1) [P.T.O.
NEC - 303
NEC - 303
t) Differentiate between CTFT & DTFT. . _ _ ,
. . d) - De?ne invertible systemiaad state whether the
g) Obtam the convolution 0f _ following systems are invertible ernbt
x(t) = u(t) and h(t) =1 for ?l s t 51 i) y(n) = x?)
h) Determine the auto-correlation function of the ii) y(n') = x2(n)+1, ' V
given signal. x(t) :e??) u(t) ? e) Determine the impulse respense function h(t) of
. . . MBPF with pasSbaif?gai?'Bf?Kan? passband
d u f L 1 t , a? H 1
1) 2:71;? :rtaebtlhj? necessary con 1 ons oran T sys em 'BW ofB .HZ centered (mfd. having a, linear
. . . ? . . , - phase response
J) Wnte the S domaln transfer ?mction of a ?rst order f), ? A discrete time system is given as
?Stem y(n)= y?2'(n-1)+x(n) Abounded mmof 3.0.1): 2n
SECTION ' B v is applied to the system. Assume that the system is
Note : Attempt any ?ve questions from this section initially relaxed? Check whetherthesystem IS stable
~(5x10=50) or unstable.
2. a) Given x (t) = 5 cost, y(t) = 2e" , ?nd the convolution g) Differentiate between the fo?owi?nga ..
of x(t) and y(t)-usmg Fourier transform. ,_
1) Continuous time signal and discrete time
5+ 3 sigpaL
b) If XS( )=-m ?nd x(t) for w ?
ii) Periodic and aperiodic Signals
a) System 1s stable
b) System is causal iii) Deterministic and randomsignals
c) System is non causal - b) Show that if x30) = ax,(t)+bx2(t)
c) Determine the z-transform of following sequences h W
withROC 1 , t enX( )= aXl(w)+bX 2(a1)
i) u ["1 SECTION- C
Note: Attempt any two Questions from this section. .
ii) ?u[?n ?1] _ V (2X15=30)
iii) x[,,] = gnu [n] _ b"u [_,, -1] 3. The accumulator is excited by the sequence x[n] = nu [n].
303/12/2016/6700 (2) 303/12/2016/6700 (3)
Aoeu?mulatorI can be de?ned by folloning Input and output
relatieh?ship.I '
y["] = :2 x(n)
"Deiemiine its :OQtB?tIMdCI' the cenditie?; ?
i) ' ?ltis initi?yreiaxed-I. , '
ii) Initially y_I(-1)?= 1 , .
4. State and pro?vIe- initial and ?nal value theorem for z
transfdrmII ?
3 3 (3+2) .
5. a) If Laplace trIansform of x(t)I is m .
Determine ?Laplace tramform ?of ?
?y(t)=x(21 I)u:(2It-I)
b) Use the convoliltion theoremI to ?nd the Laplaee
transform o? ' . . _ .
y(t)= 15(1)" 2033 f3(t)= 3391(1) ("I'd xzif3= "I(f- .2)
303/12/2016/6700 (4)
This post was last modified on 29 January 2020