Download VTU ((Visvesvaraya Technological University) B.E/B-Tech 2019 July ( Bachelor of Engineering) First & Second Semester (1st Semester & 2nd Semester) 2015 Jan 2014 Dec 14MAT11 Engineering Mathematics I Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
c.
Examine the function f(x, y) = 1+sin(x
2
+y
2
) for extremum. (07 Marks)
Evaluate .
(sin x); .
b.
X 0 X
PDF Eraser Free
USN
14MAT11
First Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics - I
6
t
u?
Time: 3 hrs.
,,,,
,..
a.
71 Note: Answer any FIVE full questions, selecting ONE full question from each part,
E
co
iz
PART ? 1
E
I
a. If Y = cos(m log x) , prove that x
2
y,
i+2
+ (2n +1)xy
ri+
,
+
(m
2
+n
2
)yn
_0.
(07 Marks)
j 0
a
4 a"
zt = b. Find the angle of intersection between the curves r = a log 0 and r = (06 Marks)
o?.?
E'1'
c5
c. Derive an expression to find radius of curvature in Cartesian form. (07 Marks)
II
bo
to
a
.
it3
2 a.
-4- If sin - ' y = 2 1og(x +1) prove that (x2
+1)Yn+2
? (2n +1)(x +1)y,
i
+ (n
2
+ 4)y
ri
= 0 .
9
4)
(07 Marks)
b. Find the pedal equation r
n
= sec hne . (06 Marks)
.V.:
3 . -3
=
C.
07 Marks)
o
2 2
8112
? .-
_, r
i
8 =
U o
?
cr
? it:)
ozi
z
3 a. Find the first four non zero terms in the expansion of f )=
e
3
:_
i
. (07 Marks)
o
cis x + y au
0 4
5 'rt b. If cosu =
i
_ show that x au
cotu
? + y? = -
?
(06 Marks)
-*/ x + .4y
ax ay 2
Max. Marks:100
loge -
-100s,
PART -2
Important Note
w) a(u, v,
C. Find where u = x
2
+ y
2
+ z
2
, v = xy + yz + zx and w=x+y+z. Hence interpret
a(x, y, z)
the result.
(07 Marks)
4 a. If w = f(x, y) , x = rcos0 , y = r sin 0 show that
rat)
2
+
1 at1
2
-
(aw)
2
1 ra-wy
ax) a
y
) ar 1
7
ao
(07 Marks)
PART - 3
5 a.
A particle moves along the curve x = 2t
2
, y = t
2
-4t , z = 3t -5 . Find the components of
velocity and acceleration at t = 1 in the direction i -23+2k . (07 Marks)
b. Using differentiation under integral sign, evaluate
e
-ax
sin x
dx . (07 Marks)
0
c. Use general rules to trace the curve y
2
(a- x) = x
3
, a > 0 (06 Marks)
1 oft
FirstRanker.com - FirstRanker's Choice
(06 Marks)
c.
Examine the function f(x, y) = 1+sin(x
2
+y
2
) for extremum. (07 Marks)
Evaluate .
(sin x); .
b.
X 0 X
PDF Eraser Free
USN
14MAT11
First Semester B.E. Degree Examination, Dec.2014/Jan.2015
Engineering Mathematics - I
6
t
u?
Time: 3 hrs.
,,,,
,..
a.
71 Note: Answer any FIVE full questions, selecting ONE full question from each part,
E
co
iz
PART ? 1
E
I
a. If Y = cos(m log x) , prove that x
2
y,
i+2
+ (2n +1)xy
ri+
,
+
(m
2
+n
2
)yn
_0.
(07 Marks)
j 0
a
4 a"
zt = b. Find the angle of intersection between the curves r = a log 0 and r = (06 Marks)
o?.?
E'1'
c5
c. Derive an expression to find radius of curvature in Cartesian form. (07 Marks)
II
bo
to
a
.
it3
2 a.
-4- If sin - ' y = 2 1og(x +1) prove that (x2
+1)Yn+2
? (2n +1)(x +1)y,
i
+ (n
2
+ 4)y
ri
= 0 .
9
4)
(07 Marks)
b. Find the pedal equation r
n
= sec hne . (06 Marks)
.V.:
3 . -3
=
C.
07 Marks)
o
2 2
8112
? .-
_, r
i
8 =
U o
?
cr
? it:)
ozi
z
3 a. Find the first four non zero terms in the expansion of f )=
e
3
:_
i
. (07 Marks)
o
cis x + y au
0 4
5 'rt b. If cosu =
i
_ show that x au
cotu
? + y? = -
?
(06 Marks)
-*/ x + .4y
ax ay 2
Max. Marks:100
loge -
-100s,
PART -2
Important Note
w) a(u, v,
C. Find where u = x
2
+ y
2
+ z
2
, v = xy + yz + zx and w=x+y+z. Hence interpret
a(x, y, z)
the result.
(07 Marks)
4 a. If w = f(x, y) , x = rcos0 , y = r sin 0 show that
rat)
2
+
1 at1
2
-
(aw)
2
1 ra-wy
ax) a
y
) ar 1
7
ao
(07 Marks)
PART - 3
5 a.
A particle moves along the curve x = 2t
2
, y = t
2
-4t , z = 3t -5 . Find the components of
velocity and acceleration at t = 1 in the direction i -23+2k . (07 Marks)
b. Using differentiation under integral sign, evaluate
e
-ax
sin x
dx . (07 Marks)
0
c. Use general rules to trace the curve y
2
(a- x) = x
3
, a > 0 (06 Marks)
1 oft
alize the matrix, A =
PDF Eraser Free
14MAT11
6
a-
b.
c.
If v = wx r , prove that
Show that div(curlA)=
If r + yj + zk and
o
r
curly = 2w where w is
.
= r . Find grad div[?
r
a constant vector. (07 Marks)
(06 Marks)
. (07 Marks)
PART 4
2
Obtain the reduction formula for 'cos' xdx . (07 Marks)
b
Solve (xy
3
+ y)dx + 2(x
2
y
2
+ x + y
4
)dy = 0 . (06 Marks)
c.
Show that the orthogonal trajectories of the family of cardioids r = a cos
2
(?
(31
) is another
2
(0
family of cardio ids r= b sin
2
?
2
(07 Marks)
,.
(
8 a. Evaluate 1 xsin
2
x cos
*
xdx . (07 Marks)
o
b. Solve ? y tan x = y
2
sec x .
0
(06 Marks) ( ?
dy
dx
c. If the temperature , of the air is 30?C and t subs e cools from 100?C to 70?C in 15
minutes, find when the temperature will be 40? .
PART? 5
9 a. Solve ? y + 2z =12 x +2,y +3z =11, 2x ? 2y z = 2 by Gauss elimination method.
(07 Marks)
(06 Marks)
?1 1 2
0 ?2 ?1 (07 Marks)
0 0 ?3
c.
Determine the largest eigen value and the corresponding eigen vector of
1 3 ?1
A= 3 2 4 .
?1 4 10
Starting with [o, 0, 1]
T
as the initial eigenvector. Perform 5 iterations. (07 Marks)
10 a. Show that the transformation y, = x, + 2x, + 5x
3
, y, = 2x, + 4x, +11x, , y
3
= ?x, + 2x
3
is
regular and find the inverse transformation. (06 Marks)
b. Solve by LU decomposition method 2x + y + 4z =12 , 8x-3y + 2z = 20 , 4x +11y z =33.
(07 Marks)
c. Reduce the quadratic form 2x
2
+ 2y
2
? 2xy ?2yz-2zx into canonical form. Hence indicate
its nature, rank, index and signature. (07 Marks)
2 of 2
FirstRanker.com - FirstRanker's Choice
This post was last modified on 01 January 2020