Download OU Pharm D Question Paper 1st Year 2016 6117 Remedial Mathematics

Download OU (Osmania University) Pharm D (Doctor of Pharmacy) 1st Year 2016 6117 Remedial Mathematics Previous Question Paper

OU - 1705 OU - 1705
Code No. 6117
FACULTY
Pharm D (6 ? YDC) I ? Year (Main / Backlog) Examination, August 2016
Subject: Remedial Mathematics
Time: 3 Hours Max.Marks: 70
Note: Answer all questions from Part ? A. Answer any Five questions from Part ? B.
PART ? A (10x2 = 20 Marks)
1 If A =
? ?
? ?
? ?
? ?
? ?
-1
2
3
and B =
? ?
? ?
? ?
? ?
? ?
3
-1
2
, find AB
T
.
2 If
-2 5
6 x
= 0, find x.
3 Find the slope of the line joining points (1, 2) and (-3, -4).
4 Find the centre and radius of the circle x
2
+y
2
-6x+1 = 0.
5 Evaluate
?
1
0
x e
x
dx.
6 Find the order and degree of differential equation
2
? ?
+ +
? ?
? ?
2
2
d y dy
dx dx
y = 0.
7 Find
2 ? x
Lim
2
x -1
.
x -1
8 Solve y dx + x dy = 0.
9 Find the Laplace transform of 5e
2t
+ e
5t
.
10 If z = x
2
+log (1+y
2
), find
?
?
z
x
and
?
?
z
y
.
PART ? B (5x10 = 50 Marks)
11 a) Show that
y + z x x
y z + x y
z z x + y
= 4 xyz.
b) If A =
? ?
? ?
? ?
1 2
3 4
, B =
? ?
? ?
? ?
2 3
4 5
and A + B ? C = 0, then find C.
12 a) If sin A =
3
5
and sin B =
5
3
, then find sin (A+B).
b) If x =d cos? cos , ? y =d cos? sin? and z =d sin? , then find x
2
+y
2
+z
2
.
..2
FirstRanker.com - FirstRanker's Choice
OU - 1705 OU - 1705
Code No. 6117
FACULTY
Pharm D (6 ? YDC) I ? Year (Main / Backlog) Examination, August 2016
Subject: Remedial Mathematics
Time: 3 Hours Max.Marks: 70
Note: Answer all questions from Part ? A. Answer any Five questions from Part ? B.
PART ? A (10x2 = 20 Marks)
1 If A =
? ?
? ?
? ?
? ?
? ?
-1
2
3
and B =
? ?
? ?
? ?
? ?
? ?
3
-1
2
, find AB
T
.
2 If
-2 5
6 x
= 0, find x.
3 Find the slope of the line joining points (1, 2) and (-3, -4).
4 Find the centre and radius of the circle x
2
+y
2
-6x+1 = 0.
5 Evaluate
?
1
0
x e
x
dx.
6 Find the order and degree of differential equation
2
? ?
+ +
? ?
? ?
2
2
d y dy
dx dx
y = 0.
7 Find
2 ? x
Lim
2
x -1
.
x -1
8 Solve y dx + x dy = 0.
9 Find the Laplace transform of 5e
2t
+ e
5t
.
10 If z = x
2
+log (1+y
2
), find
?
?
z
x
and
?
?
z
y
.
PART ? B (5x10 = 50 Marks)
11 a) Show that
y + z x x
y z + x y
z z x + y
= 4 xyz.
b) If A =
? ?
? ?
? ?
1 2
3 4
, B =
? ?
? ?
? ?
2 3
4 5
and A + B ? C = 0, then find C.
12 a) If sin A =
3
5
and sin B =
5
3
, then find sin (A+B).
b) If x =d cos? cos , ? y =d cos? sin? and z =d sin? , then find x
2
+y
2
+z
2
.
..2
OU - 1705 OU - 1705
Code No. 6117
-2-
13 a) Find the equation of the circle passing through (3, 4), (3, 2) and (1, 4).
b) Find vertex and focus of x
2
-6x-6y+6 = 0.
14 a) Show that
? x 1
Lim
2
sin (x -1) 1
=
2 x -1
.
b) If u = sec
-1
? ?
? ?
? ?
3 3
x - y
x + y
, then show that x
?
?
u
x
+y
?
?
u
y
= 2 cot u.
15 a) Evaluate
?
1/2 -1
2
0
x sin x
1- x
dx.
b) Evaluate
?
?/3
0
cos x
3 + 4 sin x
dx.
16 a) Solve
dy
dx
+ y tan x = sin x.
b) Solve
dy
dx
=
y
xy + x
.
17 a) Find the Laplace transform of e
2t
+ 4t
3
? 2 sin 3t.
b) Find the Laplace transform of e
-t
sin
2
t.
18 a) Solve
dy
dx
=
log x + 1
sin y + y cos y
.
b) If
2
? ? x
Lim x (1+a sin x) = 1, then find ?a?.
****
FirstRanker.com - FirstRanker's Choice

This post was last modified on 04 March 2020