Download OU (Osmania University) Pharm D (Doctor of Pharmacy) 1st Year 2018 1105 Remedial Mathematics Previous Question Paper
OU - 1701 OU - 1701
Code No. 1105
FACULTY
Pharm D (6?YDC) I ? Year (Instant) Examination, March 2018
Subject: Remedial Mathematics
Time: 3 Hours Max.Marks: 70
Note: Answer all questions from Part ? A. Any Five questions from Part ? B.
PART ? A (10x2 = 20 Marks)
1 If A =
? ?
? ?
? ?
? ?
? ?
-2 1
5 0
-1 4
and B =
? ?
? ?
? ?
-2 3 1
4 0 2
then find A + ? 2B .
2 Find the distance between (a cos? , a sin? ) and (0, 0).
3 If sin A =
3
5
then find cos A + tan A.
4 Find the
dy
dx
if y = (ax+b)
n
.
5 Find ? log x dx.
6 Find the order and degree of differential equation
? ?
+
? ?
? ?
2
2
2
d y dy
dx
dx
+ y = x
2
.
7 Find Laplace transform of e
t
sin t.
8 Find the center and radius of the circle 3x
2
+ 3y
2
? 6x + 12y + 3 = 0.
9 Find the .
?
4 4
2 2
x 2
x - 2
lim
x - 2
10 If Z = yx
2
z + xy
2
then find
?
?
z
x
and
?
?
z
y
.
PART ? B (5x10 = 50 Marks)
11 a) Show that
2
2
2
1 a a
1 b b
1 c c
= (a-b) (b-c) (c-a).
b) If
? ? ? ?
? ? ? ?
? ? ? ?
2x +1 0 3 0
=
2y + 4 0 8 0
then find x and y.
12 a) If tan A =
5
12
then find tan (A+B).
b) If x =d cos ? cos ?, y =d cos ? sin ? and z =d sin ? then find x
2
+ y
2
+ z
2
.
FirstRanker.com - FirstRanker's Choice
y
OU - 1701 OU - 1701
Code No. 1105
FACULTY
Pharm D (6?YDC) I ? Year (Instant) Examination, March 2018
Subject: Remedial Mathematics
Time: 3 Hours Max.Marks: 70
Note: Answer all questions from Part ? A. Any Five questions from Part ? B.
PART ? A (10x2 = 20 Marks)
1 If A =
? ?
? ?
? ?
? ?
? ?
-2 1
5 0
-1 4
and B =
? ?
? ?
? ?
-2 3 1
4 0 2
then find A + ? 2B .
2 Find the distance between (a cos? , a sin? ) and (0, 0).
3 If sin A =
3
5
then find cos A + tan A.
4 Find the
dy
dx
if y = (ax+b)
n
.
5 Find ? log x dx.
6 Find the order and degree of differential equation
? ?
+
? ?
? ?
2
2
2
d y dy
dx
dx
+ y = x
2
.
7 Find Laplace transform of e
t
sin t.
8 Find the center and radius of the circle 3x
2
+ 3y
2
? 6x + 12y + 3 = 0.
9 Find the .
?
4 4
2 2
x 2
x - 2
lim
x - 2
10 If Z = yx
2
z + xy
2
then find
?
?
z
x
and
?
?
z
y
.
PART ? B (5x10 = 50 Marks)
11 a) Show that
2
2
2
1 a a
1 b b
1 c c
= (a-b) (b-c) (c-a).
b) If
? ? ? ?
? ? ? ?
? ? ? ?
2x +1 0 3 0
=
2y + 4 0 8 0
then find x and y.
12 a) If tan A =
5
12
then find tan (A+B).
b) If x =d cos ? cos ?, y =d cos ? sin ? and z =d sin ? then find x
2
+ y
2
+ z
2
.
y
OU - 1701 OU - 1701
Code No. 1105
-2-
13 a) Find the equation of the circle passing through (0, 0), and having center at (-4, -3).
b) Find the vertex and focus of 4y
2
+ 12x ? 20y + 67 = 0.
14 a) Find
?
2
x 1
tan (x -1)
lim
x -1
.
b) Using Euler?s theorem show that x +
? ?
? ?
u u
y
x y
=
1
2
tan u for the function
u = sin
-1
? ?
? ?
? ?
? ?
x + y
x + y
15 a) Evaluate
?
x
2 x
c (1+ x)
cos (xe )
dx.
b) Evaluate
o
? ?
1
1+ sin x
dx.
16 a) Solve =
2
2
dy 1+ y
dx
1+ x
.
b) Solve (x
3
? 3xy
2
) dx + (3x
2
y ? y
3
)dy = 0.
17 a) Find the Laplace transform of e
-2t
+ t
2
? cos 3t.
b) Find the Laplace transform of e
t
cos
2
t.
18 a) Solve cos
2
x
dy
dx
+ y = tan x.
b) If x
3
+ y
3
= 3axy then prove that
2 2
2 2 3
d y 2a xy
=
dx (y - ax)
- .
****
FirstRanker.com - FirstRanker's Choice
This post was last modified on 04 March 2020