Download OU (Osmania University) BSc (Bachelor of Science - Maths, Electronics, Statistics, Computer Science, Biochemistry, Chemistry & Biotechnology) 2nd Year 1st Semester (Third Semester) (2-1) 3072 Real Analysis Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
\?x
God: Ila. W215
FACULTY OF SCIENCE
B.Sc- ?th!th 1c BB3} Enmlmtlun. "Will! blr I Mr 291!
nubjlut :Halhm?cl
PIp-II' - IH : Hal Analylll {DEC}
TImI' : 3 Hum "'I' am: an
PART- A {5 1: I I 33 Maria}
{short Answar Type}
Nate : Anamr any FIVE 131? than following quw?mF
X
rF-?H i:-
1 Wins!? Iimitnfmasequanc?a?wmm 3.. =33:1 +__..?1-'.n * -
2 Leth=1andl =%?f3rnz'l.F1nd?-talimtn
3 lfn_=sin{%]?mn?ndlim smanandliminfan. -
4 mmal E _ unmargas if'a'ndhnly ifp}1.~
11:2 n?gn}?
I4: ? 2{_n? Ill. _ .1 .. ?
5 Furn=3.1.2. 3 .let 3. _[?5?J . Flndllm sup {3.3" lim4nf{a_.} .
i+2c435? m:
. .+J?..
E Lamu?
.PTW: that {fn} converges :.Ir1i!f::.~rr'?la.ur tn 0 an R-
2 Code No. 303%!
10 (a) [i] If the aaquanna (an) cunuarges. than prove that every subsaquence con verges
to the same limit.
{ii} State and prove BulzanunWaiarstraa-s theorem.
OR
(b) If {5?} mnvargas to a positive real number s and {tn} is any sequence then
preva that ?rm sup 5.1 tn = 3 lim sup tn.
1% gga?iILaftfa) be a sequence of functions de?ned and uniformly Cauchy on a set 3 5. R
' Then puma thait there exists a function f an S such that fn "-1 f uniformly an 3.
0R
[5} Derive an explicit formula for Engx? for J x | f- | and henae-eyahaate
n=f . '
33 ?5?:
11:! 3?
12113) Letf'be a bounded function an [a. b]. If F' and ?are partitions of [3. DJ and
'P 5; Fl. thigh prnuamat
L?. F) siL {f, a} g UH, u} 3 um f3)?.-
- :?R""*t ' . . .
{biz-Fta?h'thm-a bounded function fnn'wn Riemann integrable on La, 5] ?=- 11 is
mama: magnum. inmhich aasa th Ines of the integrais agree.
1-?: $45!?
A
This post was last modified on 06 February 2020