Download OU B.Sc 2018 May-June 2nd Year 2nd Semester 7114E Mathematics Question Paper

Download OU (Osmania University)B.Sc (Bachelor of Science Maths, Electronics, Statistics, Computer Science, Biochemistry, Chemistry & Biotechnology) 2018 May-June 2nd Year 2nd Semester 7114E Mathematics Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

FIECULT-Y OF SFIENCE
3351; IV? Semester [CESC] Exan'ilnatin?. 1.111111111111112...? ._
Subject: Mathematics _
Paper: W Algebra
_"'|3in1111:..3 Hours Hal- ? I
SECHDN - A1115 )1. 4 = 2a Marks}
[Short Answer Type}
Nate: Answer any Five of the fallowing qua-
/ L111t G be any grpup and {aim}2 - 512112 far all a 1:1 e G then 5111 '
'33
Igroup.1\ 7",
?if'a,?esjandtx={12345).?= ?114532)thenevaluate1zx1i 111,13"1 111311.
is an abelian
3. If H and K are subgroups of a group G with |EIiE2?1J1K | = E?then SHOW thatH ['iK is
.11 7:
.""' _ _
'5 ?l_l:_|.ll'
an abelian group. 1.!
4 Deters'nine ail group homomorphism; 1113111 2?1?; to 2:11;.
XE} .
fl} ?ne zero diviE-ar in a ring R. F1111;- all zero divisors in the 11ng{Z12 +111. -12}
(6'. If 11 and [1 are 15111111111111: 1119;111:111 a1ing R. then shnwthai l1+ 13:11:11 + 1111r KE {1. 5! E11}
is 3111113115 an ideal of R
'H_
/8 13111 that ?x} - + 311+- ?1 has four zeros in Z 11.
?: 1R 5 be 11121111116 rings and 11:11 ?1 S is a homo morphism. If R' 15 communicative
th
en shm? th?tg 111(R)'1s- commutative
SECTION-B- {4:115:51} 111111115)
{Essay Answer Type] 1'
9. (i) Let G be a group and H' 15 non empty subset of G. Then 5111:1111 -thatH' 1; 9.1111111;
afG if and ianly ifab E H furall a. b E H.
{ii}. In the symmetric group 33 ?nd the elements which satiiafy- 1113? ? a: wha'
identity iia'nnutatian 111 $3

I
v
ii?ajtr' ?itary finite initiagral damain Is a ?aid. : _ __ . .5
Idempotant element in a ring R then show that d1?m " .' _.1.
- {I} ?e?na- M'attimai idea!" In a ring R
.?ij- L?t R be a cumulative ring with unity and A be 3% R then show
That quotient E is a fieid if and only if A' Is a maxim al I 331.
f
1-2. {a} Let D be an integral domain. Then shpMaL?-Iere exists a ?etd F that m?tal?s E
subring isomorphic to D. 3R?
1"}:th
)Enyet F be a ?eld and fix}. 9|: :f'b?x] with g(xh? a. That. show that tha?ra exists unique
polynomials g(x) and rfx):_i?r?E?J-su?h that f(x) = q(x)g{x} + rix) with either t(x} ==U m" dag
.. .-I F.
ruling g(xl- im?
ig?
?******i**ii

This post was last modified on 07 February 2020

whatsapp