Download PTU (I.K.Gujral Punjab Technical University (IKGPTU)) B-Tech (Bachelor of Technology) (ECE)-Electronics And Communications Engineering 2020 December 2nd Sem 76255 Mathematics Ii Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
Roll No.
Total No. of Pages : 03
Total No. of Questions : 18
B.Tech. (Electrical Engg./ECE) (2018 & Onwards) (Sem.?2)
MATHEMATICS-II
Subject Code : BTAM-202-18
M.Code : 76255
Time : 3 Hrs. Max. Marks : 60
INST RUCT IONS T O CANDIDAT ES :
1 .
SECT ION-A is COMPULSORY cons is ting of TEN questions carrying TWO marks
each.
2 .
SECT ION - B & C have FOUR questio ns eac h.
3 .
Attempt any FIVE questions from SECT ION B & C carrying EIGHT marks eac h.
4 .
Select atleast T WO que stions from SECT ION - B & C.
SECTION-A
Answer briefly :
3
2
4
d y
dy
1)
Is this differential equation 2
4
x
y
y 0
linear?
2
dx
dx
2)
Is this differential equation (ey + 1) cos x dx + ey sin xdy = 0 exact?
3)
Write the solution of the Clairaut's equation y = px + cos?1 (p + 1).
2
2
2
z
z
z
4)
Find complete solution of
4
4
0.
2
2
x
x
y
y
2
2
2
z
z
z
5)
Find particular integral of
7
12
x y
e
.
2
2
x
x
y
y
6)
Give geometric interpretation of Newton Raphson method.
7)
Give the Gauss's forward interpolation formula.
3
8)
Write the formula for Simpson's rule.
8
9)
Give the Adam's predictor corrector formula.
10) Write the one dimensional heat equation.
1 | M-76255
(S1)-673
SECTION-B
11) Solve :
2
dy
2xy cos x 2xy 1
a)
.
2
2
dx
x sin x 3
dy
b) tan y
+ tan x = cos y cos2x.
dx
12) a) Solve (x2D2 ? 2xD ? 4) y = x4.
2
3x
d y
dy
e
b) Solve using method of variation of parameters
6
9 y
.
2
2
dx
dx
x
13) Solve a) yzp + zxq = xy.
2
2
2
z
z
z
b)
6
cos (3x y).
2
2
x
x
y
y
14) a) Solve the PDE (D + D ? 1) (D + 2D ? 3) z = 4 + 3x + 6y.
u
u
b) Using method of separation of variables, solve 3
2
0 with u (x, 0) = 4e?x.
x
y
SECTION-C
15) a) Find a root of cos x = xex using regula falsi method correct upto three decimal places.
b) Using interpolation, find missing values in the following table :
x
45
50
55
60
65
y
3.0
-
2.0
-
-2.4
2 | M-76255
(S1)-673
16) a) Estimate f (38), using Gauss backward difference formula :
x
20
25
30
35
40
45
f (x)
354
332
291
260
231
204
2
b) Estimate
x
e dx,
using Trapezoidal rule by taking 10 intervals.
0
17) a) Use Taylor's series method to find the value of y at x = 0.2 upto 3 decimals, where y
dy
(0) = 0,
1 2xy.
dx
b) Use Runge-Kutta method of order 4 to find the value of y at x = 0.1 upto 3 decimals,
dy
where y (0) = 1,
x y .
dx
2
f
f
18) Using Crank-Nicholson method, solve the PDE 2
; 0 < t < 1.5, 0 < x < 4
2
x
t
subject to conditions f (x, 0) = 50 (4 ? x), f (0, t) = 0, f (4, t) = 0.
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any
page of Answer Sheet will lead to UMC against the Student.
3 | M-76255
(S1)-673
This post was last modified on 13 February 2021