Download GTU BE/B.Tech 2019 Winter 1st And 2nd Sem Old 110015 Vector Calculus And Linear Algebra Question Paper

Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Winter 1st And 2nd Sem Old 110015 Vector Calculus And Linear Algebra Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

1
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ? I & II (OLD) EXAMINATION ? WINTER 2019
Subject Code: 110015 Date: 01/01/2020

Subject Name: Vector Calculus And Linear Algebra
Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q.1 (a)
(1) Find the Rank of
3 2 0 1
0 2 2 1
1 2 3 2
0 1 2 1
? ?
?
?
? ?
?
?
by row echelon form.
03
(2) Solve the following system of equation by Gauss elimination method.
29
2 4 3 1
3 6 5 0
x y z
x y z
x y z
? ? ?
? ? ?
? ? ?
.
04
(b)
Determine whether the set V of all pairs of real numbers ? ? , xy with the
operations ? ? ? ? ? ?
1 1 2 2 1 2 1 2
, , 1, 1 x y x y x x y y ? ? ? ? ? ? and ? ? ? ? ,, k x y kx ky ? is a
vector space.
07

Q.2 (a)
(1) Find the inverse of
234
4 3 1
1 2 4
A
?
?
?
?
?
?
using Gauss-Jordan method, if exists.
03
(2) Determine whether
3
VR ? is an inner product space under the inner product
1 1 2 2 3 3
, 2 4 u v uv u v u v ? ? ? .
04
(b)
Evaluate ?
S
F ndS ?
?
using Gauss divergence theorem where
2
? ?
43 F xzi xyz j zk ? ? ? over the region bounded by the cone
2 2 2
z x y ? and
plane 4 z ? , above the xy plane.
07

Q.3 (a)
(1) Find the directional derivative of
23
xy yz ? at ? ? 2, 1,1 ? in the direction of
the normal to the surface
2
log 4 x z y ? ? ? at ? ? 1,2,1 ? .
03
(2) Show that
? ? ? ? ? ?
2 2 2
? ?
F x yz i y zx j z xy k ? ? ? ? ? ? is conservative. Find its
scalar potential ? .
04
(b)
Let
22
: T M R ? be a linear transformation for which ? ? ? ?
12
1, 2, T v T v ?
? ? ? ?
34
3, 4 T v T v ? where
1 2 3 4
1 0 1 1 1 1 1 1
, , ,
0 0 0 0 1 0 1 1
v v v v
? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
,
Find
ab
T
cd
?
?
?
and
12
34
T
?
?
?
.
07

Q.4 (a)
(1) If
? ?
r xi yj zk ? ? ? , show that
? ? ? ? 3
nn
div r r n r ? .
03
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ? I & II (OLD) EXAMINATION ? WINTER 2019
Subject Code: 110015 Date: 01/01/2020

Subject Name: Vector Calculus And Linear Algebra
Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q.1 (a)
(1) Find the Rank of
3 2 0 1
0 2 2 1
1 2 3 2
0 1 2 1
? ?
?
?
? ?
?
?
by row echelon form.
03
(2) Solve the following system of equation by Gauss elimination method.
29
2 4 3 1
3 6 5 0
x y z
x y z
x y z
? ? ?
? ? ?
? ? ?
.
04
(b)
Determine whether the set V of all pairs of real numbers ? ? , xy with the
operations ? ? ? ? ? ?
1 1 2 2 1 2 1 2
, , 1, 1 x y x y x x y y ? ? ? ? ? ? and ? ? ? ? ,, k x y kx ky ? is a
vector space.
07

Q.2 (a)
(1) Find the inverse of
234
4 3 1
1 2 4
A
?
?
?
?
?
?
using Gauss-Jordan method, if exists.
03
(2) Determine whether
3
VR ? is an inner product space under the inner product
1 1 2 2 3 3
, 2 4 u v uv u v u v ? ? ? .
04
(b)
Evaluate ?
S
F ndS ?
?
using Gauss divergence theorem where
2
? ?
43 F xzi xyz j zk ? ? ? over the region bounded by the cone
2 2 2
z x y ? and
plane 4 z ? , above the xy plane.
07

Q.3 (a)
(1) Find the directional derivative of
23
xy yz ? at ? ? 2, 1,1 ? in the direction of
the normal to the surface
2
log 4 x z y ? ? ? at ? ? 1,2,1 ? .
03
(2) Show that
? ? ? ? ? ?
2 2 2
? ?
F x yz i y zx j z xy k ? ? ? ? ? ? is conservative. Find its
scalar potential ? .
04
(b)
Let
22
: T M R ? be a linear transformation for which ? ? ? ?
12
1, 2, T v T v ?
? ? ? ?
34
3, 4 T v T v ? where
1 2 3 4
1 0 1 1 1 1 1 1
, , ,
0 0 0 0 1 0 1 1
v v v v
? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
,
Find
ab
T
cd
?
?
?
and
12
34
T
?
?
?
.
07

Q.4 (a)
(1) If
? ?
r xi yj zk ? ? ? , show that
? ? ? ? 3
nn
div r r n r ? .
03
2
(2) Show that
? ? ? ? ? ?
22
? ?
3 2 3 2 3 2 2 F y z yz x i xz xy j xy xz z k ? ? ? ? ? ? ? ? ? is
both solenoidal and irrotational.
04
(b)
Let
3
R have the Euclidean inner product. Use Gram-Schmidt process to
transform the basis ? ?
1 2 3
,, u u u into an orthonormal basis. Where ? ?
1
1,0,0 u ? ,
? ?
2
3,7, 2 u? and ? ?
3
0,4,1 u ? .
07

Q.5 (a)
(1) Find a basis for the subspace of
2
P spanned by the vectors
2
1, xx ? ,
2
22x ?
, 3x ? .
03
(2) Determine whether the linear transformation
? ? ? ?
2
1
: , , T R P T a b a a b x ? ? ? ? is one-to-one and onto.
04
(b)
Verify Stokes? theorem for ? ? ? ?
? ?
F x y i y z j xk ? ? ? ? ? and S is the surface of
the plane 22 x y z ? ? ? which is in the first octant.
07

Q.6 (a) (1) Find the least-square solution of the linear system Ax b ? given by
12
12
12
7
0
27
xx
xx
xx
?
? ? ?
? ? ? ?
.
03
(2) Determine whether b is in the column space of A , and if so, express b as a
linear combination of the column vectors of A if
1 1 2
1 0 1
2 1 3
A
?
?
?
?
?
?
,
1
0
2
b
? ?
?
?
?
?
?
.
04
(b)
Verify Cayley-Hemilton theorem for the matrix
2 1 1
1 2 1
1 1 2
A
? ?
?
? ? ?
?
? ?
?
and hence
find
1
A
?
. Also express
6 5 4 3 2
6 9 2 12 23 9 A A A A A A I ? ? ? ? ? ? as a linear
polynomial in A .
07

Q.7 (a)
(1) Evaluate
C
F dr ?
?
along the parabola
2
yx ? between the point ? ? 0,0 and
? ? 1,1 where
2
?
F x i xyj ? .
03
(2) (i) If ? ?
2 3 2
, , 3 f x y z x y y z ? , find grad f at the point ? ? 1, 2, 1 ? .
(ii) Find unit normal vector to the surface
22
28 x y xz ? at the point ? ? 1,0, 2
.
04
(b)
Find a matrix P that diagonalizes
0 0 2
1 2 1
1 0 3
A
? ?
?
?
?
?
?
.
07

*************
FirstRanker.com - FirstRanker's Choice

This post was last modified on 20 February 2020