Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Winter 3rd Sem New 2130002 Advanced Engineering Mathematics Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ? III (New) EXAMINATION ? WINTER 2019
Subject Code: 2130002 Date: 22/11/2019
Subject Name: Advanced Engineering Mathematics
Time: 02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q.1 (a) Determine the singular points of the differential equation
22
( 1) '' (2 1) ' 0 x x y x y x y ? ? ? ? ? and classify them as regular or irregular.
03
(b)
(i) Compute
53
,
22
?
?
?
?
(ii) Define (1) Error Function (2) Beta Function
02
02
(c) (i) Solve the I. V. P : '' 4 ' 4 0, (0) 3 & '(0) 1 y y y y y ? ? ? ? ?
(ii) Find (a)
? ?
3
(sin 3 )
t
L e t t ? (b)
1
2
67
5
s
L
s
?
? ?
?
?
?
03
04
Q.2 (a) Solve (1 ) (1 ) 0 x ydx y xdy ? ? ? ? 03
(b)
Solve
2
( 5 6) sin3 D D y x ? ? ?
04
(c)
State the convolution theorem and apply it to evaluate
1
3
1
()
L
s s a
?
?
?
?
?
07
OR
(c) Using Laplace Transformation, Solve '' 6 1, (0) 2, '(0) 0 y y y y ? ? ? ? 07
Q.3 (a)
Find the Laplace transform of
0 , 0 2
()
3 , 2
t
ft
t
? ?
?
?
?
?
03
(b) Find the power series solution of '2 y xy ? . 04
(c)
Obtain Fourier series of the Function
0 , 2 0
()
1 , 0 2
x
fx
x
? ? ? ?
?
?
?
?
07
OR
Q.3
(a)
Find the Inverse Laplace Transform of
2
2
6
( 4)
s
e
s
?
?
03
(b)
Find the series solution of
2
'' 0 y x y ? in power of x .
04
(c) Obtain Fourier series of the Function ( ) | | , f x x x x ? ? ? ? ? ? 07
Q.4 (a)
Solve tan sin 2
dy
y x x
dx
?
03
(b)
Find a sine series for ()
x
f x e ? in 0 x ? ? .
04
(c)
By the Method of Separation of variables , solve 2
uu
u
xt
?
?
?
where
3
( ,0) 4
x
u x e
?
?
07
OR
Q.4 (a)
Solve (2 ) 0, (0) 1
xx
y e dx y e dy y ? ? ? ? ?
03
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ? III (New) EXAMINATION ? WINTER 2019
Subject Code: 2130002 Date: 22/11/2019
Subject Name: Advanced Engineering Mathematics
Time: 02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q.1 (a) Determine the singular points of the differential equation
22
( 1) '' (2 1) ' 0 x x y x y x y ? ? ? ? ? and classify them as regular or irregular.
03
(b)
(i) Compute
53
,
22
?
?
?
?
(ii) Define (1) Error Function (2) Beta Function
02
02
(c) (i) Solve the I. V. P : '' 4 ' 4 0, (0) 3 & '(0) 1 y y y y y ? ? ? ? ?
(ii) Find (a)
? ?
3
(sin 3 )
t
L e t t ? (b)
1
2
67
5
s
L
s
?
? ?
?
?
?
03
04
Q.2 (a) Solve (1 ) (1 ) 0 x ydx y xdy ? ? ? ? 03
(b)
Solve
2
( 5 6) sin3 D D y x ? ? ?
04
(c)
State the convolution theorem and apply it to evaluate
1
3
1
()
L
s s a
?
?
?
?
?
07
OR
(c) Using Laplace Transformation, Solve '' 6 1, (0) 2, '(0) 0 y y y y ? ? ? ? 07
Q.3 (a)
Find the Laplace transform of
0 , 0 2
()
3 , 2
t
ft
t
? ?
?
?
?
?
03
(b) Find the power series solution of '2 y xy ? . 04
(c)
Obtain Fourier series of the Function
0 , 2 0
()
1 , 0 2
x
fx
x
? ? ? ?
?
?
?
?
07
OR
Q.3
(a)
Find the Inverse Laplace Transform of
2
2
6
( 4)
s
e
s
?
?
03
(b)
Find the series solution of
2
'' 0 y x y ? in power of x .
04
(c) Obtain Fourier series of the Function ( ) | | , f x x x x ? ? ? ? ? ? 07
Q.4 (a)
Solve tan sin 2
dy
y x x
dx
?
03
(b)
Find a sine series for ()
x
f x e ? in 0 x ? ? .
04
(c)
By the Method of Separation of variables , solve 2
uu
u
xt
?
?
?
where
3
( ,0) 4
x
u x e
?
?
07
OR
Q.4 (a)
Solve (2 ) 0, (0) 1
xx
y e dx y e dy y ? ? ? ? ?
03
2
(b)
Find a cosine series for
2
() f x x ? in 0 x ? ? .
04
(c) Using Undetermined co-efficient method , solve the differential equation
23
'' ' 6 6 3 6 y y y x x x ? ? ? ? ?
07
Q.5 (a)
Solve
22
z px qy p q ? ? ?
03
(b)
Find (1)
0
cos
t
t
L e u du
?
?
?
?
?
(2)
1
2
22
2 10
s
L
ss
?
? ?
?
?
?
04
(c)
Find the general solution of P. D. E :
2 2 2
( ) ( ) x yz p y zx q z xy ? ? ? ? ?
07
OR
Q.5 (a)
Form a Partial differential equation from
2
( , ) 0 f xy z x y z ? ? ? ?
03
(b)
Find (1)
00
sin
tt
L au du du
?
?
?
?
(2)
1
2
2
48
s
L
ss
?
? ?
?
?
?
04
(c)
Using Method of Variation of parameters, Solve
3
2
2
( 2 1) 3
x
D D y x e ? ? ?
07
*************
FirstRanker.com - FirstRanker's Choice
This post was last modified on 20 February 2020