Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 1st And 2nd Sem (New And SPFU) MTH001 Calculus Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?I &II (SPFU) EXAMINATION ? SUMMER-2019
Subject Code: MTH001 Date: 07/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:00 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a)
(i) Discuss the convergence of the series
? ?
1
1
1
n
n
n
n
nx
n
?
?
?
?
?
04
(ii) Test the convergence of the series
? ?
1
1
1
21
n
n
n
n
?
?
?
?
?
?
03
(b)
If
2 2 2 2
,
m
u r r x y z ? ? ? ? show that ? ?
222
2
2 2 2
1
m
uuu
m m r
x y z
?
?
? ? ? ?
? ? ?
07
Q.2 (a)
(i) Show that
22
( , ) , ( , ) (0,0)
0, ( , ) (0,0)
xy
f x y x y
xy
xy
?
?
?
is continuous at the origin.
04
(ii) If cos , sin x r y r ? ? , show that
2
2
1.
rr
xy
? ? ?
?
? ?
?
?
?
03
(b)
Determine absolute or conditional convergence of the series
? ?
2
3
1
1
1
n
n
n
n
?
?
?
?
?
07
Q.3 (a)
(i) Evaluate
1
00
x
dydx
?
.
03
(ii) Evaluate xydxdy
?
over the region enclosed by the x-axis, the line 2 xa ?
and the parabola
2
4 x ay ? .
04
(b)
If
1
sin ,
xy
u
xy
?
?
?
?
?
?
?
?
prove that
(i) 2 2 tan
uu
x y u
xy
?
?
?
(ii)
? ?
2 2 2
2 2 3
22
1
2 tan tan
4
u u u
x xy y u u
x x y y
? ? ?
? ? ? ?
? ? ? ?
07
Q.4 (a) (i) Find the equation of the tangent plane and normal line to the surface
22
2 z x y ? at the point (1, 1 ,3).
04
(ii) If
22
4 , , 2 u y ax x at y at ? ? ? ? find
du
dt
.
03
(b) Use triple integral to find the volume of the solid within the cylinder
22
9 xy ? between the planes 1 z ? and 1 xz ? .
07
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?I &II (SPFU) EXAMINATION ? SUMMER-2019
Subject Code: MTH001 Date: 07/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:00 PM Total Marks: 70
Instructions:
1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a)
(i) Discuss the convergence of the series
? ?
1
1
1
n
n
n
n
nx
n
?
?
?
?
?
04
(ii) Test the convergence of the series
? ?
1
1
1
21
n
n
n
n
?
?
?
?
?
?
03
(b)
If
2 2 2 2
,
m
u r r x y z ? ? ? ? show that ? ?
222
2
2 2 2
1
m
uuu
m m r
x y z
?
?
? ? ? ?
? ? ?
07
Q.2 (a)
(i) Show that
22
( , ) , ( , ) (0,0)
0, ( , ) (0,0)
xy
f x y x y
xy
xy
?
?
?
is continuous at the origin.
04
(ii) If cos , sin x r y r ? ? , show that
2
2
1.
rr
xy
? ? ?
?
? ?
?
?
?
03
(b)
Determine absolute or conditional convergence of the series
? ?
2
3
1
1
1
n
n
n
n
?
?
?
?
?
07
Q.3 (a)
(i) Evaluate
1
00
x
dydx
?
.
03
(ii) Evaluate xydxdy
?
over the region enclosed by the x-axis, the line 2 xa ?
and the parabola
2
4 x ay ? .
04
(b)
If
1
sin ,
xy
u
xy
?
?
?
?
?
?
?
?
prove that
(i) 2 2 tan
uu
x y u
xy
?
?
?
(ii)
? ?
2 2 2
2 2 3
22
1
2 tan tan
4
u u u
x xy y u u
x x y y
? ? ?
? ? ? ?
? ? ? ?
07
Q.4 (a) (i) Find the equation of the tangent plane and normal line to the surface
22
2 z x y ? at the point (1, 1 ,3).
04
(ii) If
22
4 , , 2 u y ax x at y at ? ? ? ? find
du
dt
.
03
(b) Use triple integral to find the volume of the solid within the cylinder
22
9 xy ? between the planes 1 z ? and 1 xz ? .
07
2
Q.5 (a)
(i) Prove that
2 4 8 16
1 ........
3 9 27 81
? ? ? ? ? converges and find its term.
03
(ii)Investigate the convergence of the series
1
25
3
n
n
n
?
?
?
?
04
(b)
If () u f r ? and
2 2 2 2
r x y z ? ? ? , prove that
222
2 2 2
2
( ) ( )
uuu
f r f r
x y z r
?
? ? ? ? ? ? ?
? ? ?
07
Q.6 (a)
(i) Discuss the maxima and minima of the function
2 2 3
3x y x ?
04
(ii)Test the convergence of the series
? ?
44
1
11
n
nn
?
?
? ? ?
?
03
(b)
Evaluate xyzdxdydz
?
over the positive octant of the sphere
2 2 2
4. x y z ? ? ?
07
Q.7 (a)
Evaluate
22
22 0
a a y
a
a a y
dxdy
?
?
?
by changing the order of integration.
07
(b)
(i) Find the minimum value of
22
xy ? , subject to the condition . ax by c ?
04
(ii)Expand
xy
e
?
in power of ? ? 1 x ? and ? ? 1 y ? up to first degree terms.
03
*************
FirstRanker.com - FirstRanker's Choice
This post was last modified on 20 February 2020