Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 3rd Sem New 2130002 Advanced Engineering Mathematics Previous Question Paper
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?III (NEW) EXAMINATION ? SUMMER 2019
Subject Code: 2130002 Date: 30/05/2019
Subject Name:Advanced Engineering Mathematics
Time: 02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q.1 (a)
Solve
( 2) ( 4) 0 x y dx x y dy ? ? ? ? ? ?
03
(b) Solve
1
2 tan
(1 ) ( ) 0
y
dx
y x e
dy
?
?
? ? ? ?
04
(c)
Expand
( ) cos f x x ?
as a Fourier series in the interval
x ?? ? ? ?
07
Q.2 (a) Define unit step function and unit impulse function. Also sketch
the graphs.
03
(b)
Solve
2
2
2 4sin 2
d y dy
yx
dx dx
??
? ? ?
??
??
04
(c)
Find the series solution of
0 y xy y ? ? ? ? ? ?
about the ordinary
point 0 x ? .
07
OR
(c)
Find the Fourier series expansion for () fx , if
,0
()
,0
x
fx
xx
??
?
? ? ? ? ?
?
?
??
?
, Also deduce that
2
22
11
1 ......
3 5 8
?
? ? ? ?
07
Q.3 (a) Using Fourier integral representation, show that
0
,0 1 cos
sin
2
0,
x
xd
x
?
? ??
??
?
?
?
?
?? ? ?
?
?
?
?
?
?
03
(b)
Solve
2
2
2
sin 2
dy
y x x
dx
??
??
??
??
04
(c) Solve by method of variation of parameters
2
2
1
9
1 sin3
dy
y
dx x
??
??
??
?
??
07
OR
Q.3 (a)
Find Laplace transform of sin
at
te at
03
(b)
Solve
2
2
5 sin 2
x
d y dy
ex
dx dx
? ? ?
04
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER ?III (NEW) EXAMINATION ? SUMMER 2019
Subject Code: 2130002 Date: 30/05/2019
Subject Name:Advanced Engineering Mathematics
Time: 02:30 PM TO 05:30 PM Total Marks: 70
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q.1 (a)
Solve
( 2) ( 4) 0 x y dx x y dy ? ? ? ? ? ?
03
(b) Solve
1
2 tan
(1 ) ( ) 0
y
dx
y x e
dy
?
?
? ? ? ?
04
(c)
Expand
( ) cos f x x ?
as a Fourier series in the interval
x ?? ? ? ?
07
Q.2 (a) Define unit step function and unit impulse function. Also sketch
the graphs.
03
(b)
Solve
2
2
2 4sin 2
d y dy
yx
dx dx
??
? ? ?
??
??
04
(c)
Find the series solution of
0 y xy y ? ? ? ? ? ?
about the ordinary
point 0 x ? .
07
OR
(c)
Find the Fourier series expansion for () fx , if
,0
()
,0
x
fx
xx
??
?
? ? ? ? ?
?
?
??
?
, Also deduce that
2
22
11
1 ......
3 5 8
?
? ? ? ?
07
Q.3 (a) Using Fourier integral representation, show that
0
,0 1 cos
sin
2
0,
x
xd
x
?
? ??
??
?
?
?
?
?? ? ?
?
?
?
?
?
?
03
(b)
Solve
2
2
2
sin 2
dy
y x x
dx
??
??
??
??
04
(c) Solve by method of variation of parameters
2
2
1
9
1 sin3
dy
y
dx x
??
??
??
?
??
07
OR
Q.3 (a)
Find Laplace transform of sin
at
te at
03
(b)
Solve
2
2
5 sin 2
x
d y dy
ex
dx dx
? ? ?
04
2
(c) Solve
2
2
2
4 cos(log ) sin(log )
d y dy
x x y x x x
dx dx
? ? ? ?
07
Q.4 (a)
Find the orthogonal trajectories of the curve
2
y x c ??
03
(b)
Find the Laplace transform of (i) cos( ) at b ?
(ii)
2
sin 3t
04
(c) State convolution theorem and apply it to evaluate
? ?
2
1
2
2
4
s
L
s
?
??
??
??
?
??
07
OR
Q.4
(a)
Solve
32
32
3 4 0
d y d y
y
dx dx
? ? ?
03
(b)
Find Half range cosine series for ? ?
2
( ) 1 f x x ?? in the interval
01 x ??
04
(c)
Solve 4 3 , (0) (0) 1
t
y y y e y y
?
? ? ? ? ? ? ? ? ? using
Laplace transform.
07
Q.5 (a) Form the partial differential equation by eliminating the arbitrary
constants from
22
z ax by a b ? ? ? ?
03
(b)
Solve
( ) ( ) y z p x y q z x ? ? ? ? ?
04
(c)
Solve
3 2 0,
uu
xy
??
??
??
where ( ,0) 4
x
u x e
?
? using the
method of separation of variables.
07
OR
Q.5 (a) Form the partial differential equation by eliminating the arbitrary
function from
22
( , ) 0 f x y z xy ? ? ?
03
(b)
Solve
2
log .
z
xy
xy
?? ?
??
??
??
??
04
(c)
A bar with insulated sides is initially at temperature
0
0 C
,
throughout. The end 0 x ? is kept at
0
0 C
and heat is suddenly
applied at the end xl ? so that
u
A
x
?
?
?
for xl ? , where A
is a constant. Find the temperature function.
07
*************
FirstRanker.com - FirstRanker's Choice
This post was last modified on 20 February 2020