Download GTU BE/B.Tech 2019 Summer 3rd Sem New 2130002 Advanced Engineering Mathematics Question Paper

Download GTU (Gujarat Technological University) BE/BTech (Bachelor of Engineering / Bachelor of Technology) 2019 Summer 3rd Sem New 2130002 Advanced Engineering Mathematics Previous Question Paper

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

1
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?III (NEW) EXAMINATION ? SUMMER 2019
Subject Code: 2130002 Date: 30/05/2019

Subject Name:Advanced Engineering Mathematics

Time: 02:30 PM TO 05:30 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

MARKS

Q.1 (a)
Solve
( 2) ( 4) 0 x y dx x y dy ? ? ? ? ? ?

03

(b) Solve
1
2 tan
(1 ) ( ) 0
y
dx
y x e
dy
?
?
? ? ? ?


04
(c)
Expand
( ) cos f x x ?
as a Fourier series in the interval
x ? ? ? ?

07
Q.2 (a) Define unit step function and unit impulse function. Also sketch
the graphs.
03

(b)
Solve
2
2
2 4sin 2
d y dy
yx
dx dx
?
? ? ?
?
?


04
(c)
Find the series solution of
0 y xy y ? ? ? ? ? ?
about the ordinary
point 0 x ? .

07
OR
(c)
Find the Fourier series expansion for () fx , if
,0
()
,0
x
fx
xx
?
?
? ? ? ? ?
?
?
?
?
, Also deduce that
2
22
11
1 ......
3 5 8
?
? ? ? ?
07
Q.3 (a) Using Fourier integral representation, show that
0
,0 1 cos
sin
2
0,
x
xd
x
?
? ?
?
?
?
?
?
? ? ?
?
?
?
?
?
?

03

(b)
Solve
2
2
2
sin 2
dy
y x x
dx
?
?
?
?


04
(c) Solve by method of variation of parameters
2
2
1
9
1 sin3
dy
y
dx x
?
?
?
?
?



07
OR
Q.3 (a)
Find Laplace transform of sin
at
te at
03

(b)
Solve
2
2
5 sin 2
x
d y dy
ex
dx dx
? ? ?


04
FirstRanker.com - FirstRanker's Choice
1
Seat No.: ________ Enrolment No.___________

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER ?III (NEW) EXAMINATION ? SUMMER 2019
Subject Code: 2130002 Date: 30/05/2019

Subject Name:Advanced Engineering Mathematics

Time: 02:30 PM TO 05:30 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

MARKS

Q.1 (a)
Solve
( 2) ( 4) 0 x y dx x y dy ? ? ? ? ? ?

03

(b) Solve
1
2 tan
(1 ) ( ) 0
y
dx
y x e
dy
?
?
? ? ? ?


04
(c)
Expand
( ) cos f x x ?
as a Fourier series in the interval
x ? ? ? ?

07
Q.2 (a) Define unit step function and unit impulse function. Also sketch
the graphs.
03

(b)
Solve
2
2
2 4sin 2
d y dy
yx
dx dx
?
? ? ?
?
?


04
(c)
Find the series solution of
0 y xy y ? ? ? ? ? ?
about the ordinary
point 0 x ? .

07
OR
(c)
Find the Fourier series expansion for () fx , if
,0
()
,0
x
fx
xx
?
?
? ? ? ? ?
?
?
?
?
, Also deduce that
2
22
11
1 ......
3 5 8
?
? ? ? ?
07
Q.3 (a) Using Fourier integral representation, show that
0
,0 1 cos
sin
2
0,
x
xd
x
?
? ?
?
?
?
?
?
? ? ?
?
?
?
?
?
?

03

(b)
Solve
2
2
2
sin 2
dy
y x x
dx
?
?
?
?


04
(c) Solve by method of variation of parameters
2
2
1
9
1 sin3
dy
y
dx x
?
?
?
?
?



07
OR
Q.3 (a)
Find Laplace transform of sin
at
te at
03

(b)
Solve
2
2
5 sin 2
x
d y dy
ex
dx dx
? ? ?


04
2
(c) Solve
2
2
2
4 cos(log ) sin(log )
d y dy
x x y x x x
dx dx
? ? ? ?



07
Q.4 (a)
Find the orthogonal trajectories of the curve
2
y x c ?
03
(b)
Find the Laplace transform of (i) cos( ) at b ?
(ii)
2
sin 3t
04
(c) State convolution theorem and apply it to evaluate
? ?
2
1
2
2
4
s
L
s
?
?
?
?
?
?

07
OR
Q.4
(a)
Solve
32
32
3 4 0
d y d y
y
dx dx
? ? ?


03
(b)
Find Half range cosine series for ? ?
2
( ) 1 f x x ? in the interval
01 x ?

04
(c)
Solve 4 3 , (0) (0) 1
t
y y y e y y
?
? ? ? ? ? ? ? ? ? using
Laplace transform.

07
Q.5 (a) Form the partial differential equation by eliminating the arbitrary
constants from
22
z ax by a b ? ? ? ?
03
(b)
Solve
( ) ( ) y z p x y q z x ? ? ? ? ?

04
(c)
Solve
3 2 0,
uu
xy
?
?
?
where ( ,0) 4
x
u x e
?
? using the
method of separation of variables.

07
OR

Q.5 (a) Form the partial differential equation by eliminating the arbitrary
function from
22
( , ) 0 f x y z xy ? ? ?

03
(b)
Solve
2
log .
z
xy
xy
? ?
?
?
?
?


04
(c)
A bar with insulated sides is initially at temperature
0
0 C
,
throughout. The end 0 x ? is kept at
0
0 C
and heat is suddenly
applied at the end xl ? so that
u
A
x
?
?
?
for xl ? , where A
is a constant. Find the temperature function.

07

*************
FirstRanker.com - FirstRanker's Choice

This post was last modified on 20 February 2020