Download PTU (I.K. Gujral Punjab Technical University Jalandhar (IKGPTU) ) BE/BTech CSE/IT (Computer Science And Engineering/ Information Technology) 2020 March 1st Sem MA 1300 Linear Algebra For Engineers Previous Question Paper
We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!
Roll No. Total No. of Pages : 03
Total No. of Questions : 09
B.Tech. (Software Engineering) (Sem.?1)
LINEAR ALGEBRA FOR ENGINEERS
Subject Code : MA-1300
M.Code : 77256
Time : 3 Hrs. Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :
1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks
each.
2. SECTION - B & C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B & C.
SECTION-A
1. Solve the following :
a) Find the general solution of the linear system whose augmented matrix is
1 3 5 0
0 1 1 1
? ? ? ?
? ?
? ?
? ?
.
b) Reduce the matrix
1 3 5
2 1 4
2 8 2
? ?
? ?
?
? ?
? ?
?
? ?
to row echelon form.
c) Find the inverse of the matrix
1 3
2 4
? ?
? ?
? ?
.
d) Examine whether the transformation T : R
2
? R
2
defined as
| |
?
x x
T
y y
? ? ? ?
?
? ? ? ?
? ? ? ?
is linear or
not?
e) Let A
a b
c d
? ?
?
? ?
? ?
and let k be a scalar. Find a formula that relates det kA to k and det
A.
f) Let a
2
5
1
? ?
? ?
? ?
? ?
? ? ?
? ?
and b
7
4
6
? ? ?
? ?
? ?
? ?
? ?
? ?
. Compute ||a + b||
2
.
FirstRanker.com - FirstRanker's Choice
1 | M-77256 (S1)-2591
Roll No. Total No. of Pages : 03
Total No. of Questions : 09
B.Tech. (Software Engineering) (Sem.?1)
LINEAR ALGEBRA FOR ENGINEERS
Subject Code : MA-1300
M.Code : 77256
Time : 3 Hrs. Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :
1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks
each.
2. SECTION - B & C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B & C.
SECTION-A
1. Solve the following :
a) Find the general solution of the linear system whose augmented matrix is
1 3 5 0
0 1 1 1
? ? ? ?
? ?
? ?
? ?
.
b) Reduce the matrix
1 3 5
2 1 4
2 8 2
? ?
? ?
?
? ?
? ?
?
? ?
to row echelon form.
c) Find the inverse of the matrix
1 3
2 4
? ?
? ?
? ?
.
d) Examine whether the transformation T : R
2
? R
2
defined as
| |
?
x x
T
y y
? ? ? ?
?
? ? ? ?
? ? ? ?
is linear or
not?
e) Let A
a b
c d
? ?
?
? ?
? ?
and let k be a scalar. Find a formula that relates det kA to k and det
A.
f) Let a
2
5
1
? ?
? ?
? ?
? ?
? ? ?
? ?
and b
7
4
6
? ? ?
? ?
? ?
? ?
? ?
? ?
. Compute ||a + b||
2
.
2 | M-77256 (S1)-2591
g) Show that similar matrices have same eigen values.
h) If ? is an eigen value of A, show that ?
?1
is an eigen value of A
?1
.
i) Check whether the vectors u
12
3
5
? ?
? ?
?
? ?
? ? ?
? ?
and v
2
3
3
? ?
? ?
? ?
? ?
? ?
? ?
are orthogonal or not?
j) The characteristic roots of
8 6 2
6 4
2 4 3
A k
? ? ?
? ?
? ? ?
? ?
? ?
?
? ?
are 0, 3, 15. Find the value of k.
SECTION-B
2. a) Determine if the following system is consistent :
y ? 4z = 8
2x ? 3y + 2z = 1
4x ? 8y + 12z = 1
b) Let u =
1 2 4
4 , 3 and 1
2 7
v w
h
? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ?
, For what value(s) of h is w in the plane spanned
by u and v ?
3. a) Given
1 2 4
0 1 5
2 4 3
A
? ?
? ?
?
? ?
? ?
? ? ?
? ?
and
2
2
9
b
? ? ?
? ?
?
? ?
? ?
? ?
, write the augmented matrix for the linear
system that corresponds to the matrix equation Ax = b. Then solve the system and
write the solution as a vector.
b) Find the inverse of the matrix
0 1 2
1 0 3
4 3 8
? ?
? ?
? ?
? ?
?
? ?
using row transformations.
4. Let T : R
3
? R
3
be a linear transformation defined by
0 x
T y x y
z x y z
? ? ? ?
? ? ? ?
? ?
? ? ? ?
? ? ? ?
? ?
? ? ? ?
. Find the
matrix representation of T w.r.t. the ordered basis B
1
= {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
B
2
= {(1, 0, 1), (1, 1, 0), (0, 1, 1)}.
FirstRanker.com - FirstRanker's Choice
1 | M-77256 (S1)-2591
Roll No. Total No. of Pages : 03
Total No. of Questions : 09
B.Tech. (Software Engineering) (Sem.?1)
LINEAR ALGEBRA FOR ENGINEERS
Subject Code : MA-1300
M.Code : 77256
Time : 3 Hrs. Max. Marks : 60
INSTRUCTIONS TO CANDIDATES :
1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks
each.
2. SECTION - B & C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B & C.
SECTION-A
1. Solve the following :
a) Find the general solution of the linear system whose augmented matrix is
1 3 5 0
0 1 1 1
? ? ? ?
? ?
? ?
? ?
.
b) Reduce the matrix
1 3 5
2 1 4
2 8 2
? ?
? ?
?
? ?
? ?
?
? ?
to row echelon form.
c) Find the inverse of the matrix
1 3
2 4
? ?
? ?
? ?
.
d) Examine whether the transformation T : R
2
? R
2
defined as
| |
?
x x
T
y y
? ? ? ?
?
? ? ? ?
? ? ? ?
is linear or
not?
e) Let A
a b
c d
? ?
?
? ?
? ?
and let k be a scalar. Find a formula that relates det kA to k and det
A.
f) Let a
2
5
1
? ?
? ?
? ?
? ?
? ? ?
? ?
and b
7
4
6
? ? ?
? ?
? ?
? ?
? ?
? ?
. Compute ||a + b||
2
.
2 | M-77256 (S1)-2591
g) Show that similar matrices have same eigen values.
h) If ? is an eigen value of A, show that ?
?1
is an eigen value of A
?1
.
i) Check whether the vectors u
12
3
5
? ?
? ?
?
? ?
? ? ?
? ?
and v
2
3
3
? ?
? ?
? ?
? ?
? ?
? ?
are orthogonal or not?
j) The characteristic roots of
8 6 2
6 4
2 4 3
A k
? ? ?
? ?
? ? ?
? ?
? ?
?
? ?
are 0, 3, 15. Find the value of k.
SECTION-B
2. a) Determine if the following system is consistent :
y ? 4z = 8
2x ? 3y + 2z = 1
4x ? 8y + 12z = 1
b) Let u =
1 2 4
4 , 3 and 1
2 7
v w
h
? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ?
, For what value(s) of h is w in the plane spanned
by u and v ?
3. a) Given
1 2 4
0 1 5
2 4 3
A
? ?
? ?
?
? ?
? ?
? ? ?
? ?
and
2
2
9
b
? ? ?
? ?
?
? ?
? ?
? ?
, write the augmented matrix for the linear
system that corresponds to the matrix equation Ax = b. Then solve the system and
write the solution as a vector.
b) Find the inverse of the matrix
0 1 2
1 0 3
4 3 8
? ?
? ?
? ?
? ?
?
? ?
using row transformations.
4. Let T : R
3
? R
3
be a linear transformation defined by
0 x
T y x y
z x y z
? ? ? ?
? ? ? ?
? ?
? ? ? ?
? ? ? ?
? ?
? ? ? ?
. Find the
matrix representation of T w.r.t. the ordered basis B
1
= {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
B
2
= {(1, 0, 1), (1, 1, 0), (0, 1, 1)}.
3 | M-77256 (S1)-2591
5. a) Let v
1
= (1, ?1, 0), v
2
= (0, 1, ?1) and v
3
= (0, 0, 1) be elements of R
3
. Show that the
set of vectors {v
1
, v
2
, v
3
} is linearly independent.
b) Prove that
2
2
2
1
1 0
1
w w
w w
w w
? , where w is a cube root of unity.
SECTION-C
6. a) Let
1 2
2 4
3 , 5 ,
5 8
u u
? ? ? ? ?
? ? ? ?
? ? ?
? ? ? ?
? ? ? ? ?
? ? ? ?
and
8
2
9
v
? ?
? ?
?
? ?
? ? ?
? ?
. Determine whether v is in the subspace of R
3
generated by u
1
and u
2
.
b) Solve the following system of linear equations by Cramer?s rule :
x + y + z = 6, x ? y + 2z = 5, 3x + y + z = 8
7. Determine the eigen values and corresponding eigen vectors of the matrix
6 2 2
2 3 1
2 1 3
? ? ?
? ?
? ?
? ?
? ?
?
? ?
.
8. Diagonalize the matrix
1 6 1
1 2 0
0 0 3
? ?
? ?
? ?
? ?
? ?
.
9. Find an orthogonal basis or the coloumn space of the matrix
3 5 1
1 1 1
1 5 3
3 7 8
? ? ?
? ?
? ?
? ? ?
? ?
?
? ?
NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any
page of Answer Sheet will lead to UMC against the Student.
FirstRanker.com - FirstRanker's Choice
This post was last modified on 21 March 2020