Download VTU BE 2020 Jan ME Question Paper 15 Scheme 6th Sem 15ME61 Finite Element Method

Download Visvesvaraya Technological University (VTU) BE ( Bachelor of Engineering) ME (Mechanical Engineering) 2015 Scheme 2020 January Previous Question Paper 6th Sem 15ME61 Finite Element Method

We rely on ads to keep our content free. Please consider disabling your ad blocker or whitelisting our site. Thank you for your support!

USN
15ME61
Sixth Semester S.E. Degree Examination, Dec.24-94n.2020
Finite Element Method
Time: 3 hrs. Max. Marks: 80
Note: Answer FIVE full questions, choosing ONE full question from each module.
Module-1
1 a. List the type of elements with neat sketch. (06 Marks)
73 b. A simply supported beam subjected to point load at the centre. Derive an equation for
maximum deflection using trigonometrically function by RR method. (10 Marks)
-0
q)
OR
ll
2 a. List the advantages and disadvantages of FEM.
c ?
b. Explain Elasticity matrix [D] for stress and plain strain.
.., .--
-.... ,...-
c. Explain simplex, complex and multiplex elements.
._...-.0 r
th
.
c
-
Module-2
_ -
3 a. Derive the shape function, in natural coordinate system for:
c.. -
V
--
,., .
(i) Constant strain triangle.
...
..= . : (ii) I D bar element. (08 Marks)
0 -
.
...
b. Using two point Gaussian quadrature formula evaluate and compare with exact solution:

,i
,,,
4
,
0
E 7.
(i)
I = f (I + +2
2
+ 3V k I
,..., t
,
-1
T5 G
42
6 -0
03 0
(ii) I = .1 (4 ? y)
2
dy (08 Marks) "
4
--
-'5 t
2
7=z,
OR
>, t,
4 a. For the stepped bar shown in Fig. Q4 (a), determine the nodal displacement, element stresses
iE
:-: _,.. .
0
and reaction at supports.
E
1
= 70 GPa; E2 = 200 GPa; P = 200 KN; A
l
= 2400 mm
2
; A2 = 600 mm
2
(08 Marks)
-= ,-
Z '2
.
:, ;:,
CA '..=
= ',.-:,
CC r-
L. E,
g'
72

>.,,..-
0
t.0
0 t.0
1; ?
.
E >
0 e
<
0
z -
5co


Fig. Q4 (b)
1 of 2
(03 Marks)
(04 Marks)
(09 Marks)
'I c
Fig. Q4 (a)
b. A plane truss shown in Fig. Q4 (b), determine nodal displacements, stresses in each element
and reaction at supports.
E = 200 GPa ; A
l
= 1200 111111
2
; Ai! = 1000 mm
2
; P = 50 KN (08 Marks)
FirstRanker.com - FirstRanker's Choice
USN
15ME61
Sixth Semester S.E. Degree Examination, Dec.24-94n.2020
Finite Element Method
Time: 3 hrs. Max. Marks: 80
Note: Answer FIVE full questions, choosing ONE full question from each module.
Module-1
1 a. List the type of elements with neat sketch. (06 Marks)
73 b. A simply supported beam subjected to point load at the centre. Derive an equation for
maximum deflection using trigonometrically function by RR method. (10 Marks)
-0
q)
OR
ll
2 a. List the advantages and disadvantages of FEM.
c ?
b. Explain Elasticity matrix [D] for stress and plain strain.
.., .--
-.... ,...-
c. Explain simplex, complex and multiplex elements.
._...-.0 r
th
.
c
-
Module-2
_ -
3 a. Derive the shape function, in natural coordinate system for:
c.. -
V
--
,., .
(i) Constant strain triangle.
...
..= . : (ii) I D bar element. (08 Marks)
0 -
.
...
b. Using two point Gaussian quadrature formula evaluate and compare with exact solution:

,i
,,,
4
,
0
E 7.
(i)
I = f (I + +2
2
+ 3V k I
,..., t
,
-1
T5 G
42
6 -0
03 0
(ii) I = .1 (4 ? y)
2
dy (08 Marks) "
4
--
-'5 t
2
7=z,
OR
>, t,
4 a. For the stepped bar shown in Fig. Q4 (a), determine the nodal displacement, element stresses
iE
:-: _,.. .
0
and reaction at supports.
E
1
= 70 GPa; E2 = 200 GPa; P = 200 KN; A
l
= 2400 mm
2
; A2 = 600 mm
2
(08 Marks)
-= ,-
Z '2
.
:, ;:,
CA '..=
= ',.-:,
CC r-
L. E,
g'
72

>.,,..-
0
t.0
0 t.0
1; ?
.
E >
0 e
<
0
z -
5co


Fig. Q4 (b)
1 of 2
(03 Marks)
(04 Marks)
(09 Marks)
'I c
Fig. Q4 (a)
b. A plane truss shown in Fig. Q4 (b), determine nodal displacements, stresses in each element
and reaction at supports.
E = 200 GPa ; A
l
= 1200 111111
2
; Ai! = 1000 mm
2
; P = 50 KN (08 Marks)
1? 5 r 1.?rn
xn
Jw
6
-
rei
15ME6t
Module-3
5 a. Derive the Hermite function of a beam element. (08 Marks)
b. For the beam element shown in figure Q5 (b), determine the displacement and slope at the
free end. Take E = 70 GPa, I = 4x I V m
4
(08 Marks)
10O Xrt
o'F- T
4
\ YIN
r
Fig. Q5 (b)
OR
6 a. Derive the stiffness matrix for a torsion element. (06 Marks)
b. Find the deflection and slopes at the nodes for the aluminium beam shown in Fig. Q6 (b).
(10 Marks)
Fig. Q6 (b)
E = 70 GPa
I =2x10
-6
m
4

Module-4
7 a. With brief explanation obtain the rate equation that describes the rate of energy flow for the
following conditions:
(i) Conduction (ii) Convection (iii) Radiation (06 Marks)
b. Derive the shape function of a 1 D bar element with temperature T
1
and T2 at the nodes.
(10 Marks)
OR
8 a. Determine the temperature distribution in the rectangular fin shown in Fig. Q8 (a). Neglect
convection heat transfer and assume heat generated inside the fin as 500 W/m
3
(08 Marks)
0.
02.
WI
0.0ym
Fig. Q8 (a)
b.
Derive the stiffness matrix for fluid flow in 1 D bar element. (08 Marks)
Module-5
9 Derive the shape function for axisymmetric triangular element. (16 Marks)
OR
10 Derive the consistent mass matrix for the following:
(i)
1 D bar element.
(ii) 1 D truss element.

/ '
`'N (16 Marks)
2 of 2
FirstRanker.com - FirstRanker's Choice

This post was last modified on 02 March 2020

whatsapp