VNSGU BA 2019 2nd Year 3285 Statistics Question Paper

VNSGU (Veer Narmad South Gujarat University) BA (Bachelor of Arts) 2019 2nd Year 3285 Statistics Previous Question Paper

*RAN-3285*
R A N - 3 2 8 5
RAN-3285
S.Y.B.A. (Sem.-4) Examination
March / April - 2019
Statistics : Higher : Paper IX

[ Total Marks: 50
k|Q"p : / Instructions
(1)
"uQ? v$ip?h?g r"ip"uhpmu rhNsp? D?fhlu `f Ah?e gMhu.
Seat No.:
Fill up strictly the details of signs on your answer book
Name of the Examination:
S.Y.B.A. (Sem.-4)
Name of the Subject :
Statistics : Higher : Paper IX
Subject Code No.: 3
2
8
5
Student's Signature
(2) S>dZu bpSy> v$ip?h?gp A,,L$ ??""p `|fp NyZ v$ip?h? R>?.
(3) Apg?M`?p? A"? Ap,,L$X$pip"ue L$p??V$L$p? rh",,su'u Ap`hpdp,, Aphi?.
(4) kpvy$,, L?$g?eyg?V$f hp`fu iL$pi?.
1.
"uQ?"p ??"p?"p,, V|,,$L$dp,, D?f Ap`p?.
10
(1) ?ep?ep Ap`p? :
(i) ?rsb,,^p?
(ii) ?p?e DL?$g
(2) kyf?M Apep?S>" kd?ep"u dep?v$p gMp?.
(3) "uQ? Ap`?g r"ey[?s kd?ep lg L$fp?.
?e[?s
L$pep?
P
P
P
1
2
3
J
5
0
0
1
J
1
3
0
2
J
0
0
6
3
RAN-3285 ]
[ 1 ]
[ P.T.O. ]

(4) kyf?M Apep?S>" ??"dp,, i?e DL?$g tbvy$Ap? (0, 0) , (0, 3 ) , ( 1.6, 2.4 ) ( 4, 0) R>?.
l?sygnu rh^?e z = 5x + 7y "u dl?d qL,,$ds d?mhp?.
(5) "uQ? Ap`?g hpl"?ehlpf"u kd?ep ?e|"sd lpf"u fus? DL?$gp?.
Dv?$ch ?'p"
?pr?s ?'p"
`yfhW$p?
A
B
C
I
8
7
5
5
II
4
3
4
7
III
5
2
9
8
dp,,N
10
2
8
2. (A) kyf?M Apep?S>" ??""p? A'? Ap`u, NrZsuL$ ?h?$` gMp?.
6
(b) l?sygnu rh^?e z = 3x + 4x "u qL,,$ds dl?d 'pe,
1
2
"uQ?"u ifsp?"? Ap^u"
7
x , x H 0
1
2
5x + 4x G 200
1
2
3x + 5x G 150
1
2
5x + 4x G 100
1
2
8x + 4x H 80
1
2
Apg?M"u fus? DL?$g ip?^p?.
A'hp
2. (A) L$pep??dL$ k,,ip?^""p? A'? Ap`u D`ep?Np? gMp?.
(b) Apg?M"u fus? DL?$g ip?^p?.
7
3x + y H 15
x + 2y H 12
3x + 2y H 24
x H 0 , y H 0 "? Ap^u"
z = 30x + 50y "u ?e|"sd qL,,$ds ip?^p?.
RAN-3285 ]
[ 2 ]
[ Contd.

3. (A) hpl"?ehlpf ??""p? A'? Ap`u NprZsuL$ ?h?$` gMp?.
6
(b) "uQ? Ap`?g hpl"?ehlpf kd?ep"p? DL?$g ?e|"sd ?rZL$"u fus? DL?$gp?.
7
a??V$fu
Np?X$pD"
`|fhW$p?
A
B
C
I
7
12
9
16
II
8
10
6
10
III
10
9
12
12
dp,,N
8
11
19
38
A'hp
3. (A) hpl"?ehlpf ??""u ?e|"sd ?rZL$"u fus kd?hp?.
6
(b) hp?N?g"u fus? hpl"?ehlpf"u "uQ?"u kd?ep"p? d|mc|s ?p?e DL?$g d?mhp?.
7
h?QpZ L?$??
Np?X$pD"
`|fhW$p?
X
Y
Z
A
3
7
1
20
B
2
9
12
30
C
10
2
5
50
dp,,N
35
15
50
4. (A) r"ey[?s kd?ep"p? A'? Ap`u NrZsuL$ ?h?$` gMp?.
7
(b) Ly$g kde Ap?R>p? 'pe s? fus? r"ey[?s Ap`p?.
7
L$pep?
?e[?sAp?
P
Q
R
S
A
12
15
18
8
B
13
10
9
14
C
10
12
15
13
D
7
8
9
14
A'hp
4. (A) r"ey[?s"u kd?ep"u l,,N?qfe" `?^rs gMp?.
7
RAN-3285 ]
[ 3 ]
[ P.T.O. ]

(b) Qpf L$pd Qpf diu" `f 'pe R>?. v$f?L$ e,,? `f Sy>v$p-Sy>v$p L$pe? dpV?$ 'sy,, MQ? ?$r`epdp,,
"uQ?"p ?rZL$dp,, v$ip?h?g R>?.
7
e,,?p?
L$pdv$pfp?
I
II
III
IV
A
5
7
11
6
B
8
5
9
6
C
4
7
10
7
D
10
4
8
3
Ly$g MQ? Ap?R>pdp,, Ap?Ry>,, 'pe s?d r"ey[?s Ap`p?.
English Version
Instructions
1. As per the instruction no. 1 of page no. 1
2. Figures to the right indicate the marks of question
3. Graph paper and statistical table will be provided on request
4. Simple calculator can be used.
1.
Answer in short of the following question:
10
(1). Define : (i) Constraints (ii) Feasible solution
(2) State the limitations of linear programming problem.
(3) Solve the assignment problem given below.
Persons
Jobs
P
P
P
1
2
3
J
5
0
0
1
J
1
3
0
2
J
0
0
6
3
(4) The points of feasible solution in linear programming problem are (0, 0) ,
(0, 3 ) , ( 1.6, 2.4 ) ( 4, 0) . Obtain the maximum value of objective
function z = 5x + 7y.
RAN-3285 ]
[ 4 ]
[ Contd.


(5) Solve the following transportation problem by row minima method.
Destination
Origin
Supply
A
B
C
I
8
7
5
5
II
4
3
4
7
III
5
2
9
8
Demand
10
2
8
2. (a) Give the meaning of linear programming problem and state its
6
mathematical formulation.
(b) Objective function z = 3x + 4x , become maximize when constraints are
7
1
2
x , x H 0
1
2
5x + 4x G 200
1
2
3x + 5x G 150
1
2
5x + 4x G 100
1
2
8x + 4x H 80
1
2
Solve the using graphical method.
2. (a) Give the meaning of operation research and state uses of it.
6
(b) Solve the linear programming problem by using graphical method.
7
3x + y H 15
x + 2y H 12
3x + 2y H 24
x H 0 , y H 0 and objective function z = 30x + 50y become minimum.
3. (a) Give meaning of transportation problem and state its mathematical formulation.
6
(b) Solve the following T.P problem by using matrix minima method.
7
Farctories
Godown
Supply
A
B
C
I
7
12
9
16
II
8
10
6
10
III
10
9
12
12
Demand
8
11
19
38
OR
RAN-3285 ]
[ 5 ]
[ P.T.O. ]

3. (a) Explain matrix minima method for transportation problem.
6
(b) Obtain a basic feasible solution of the following transportation problem by 7
Vogel's method.
Sales Depots
Godown
Supply
X
Y
Z
A
3
7
1
20
B
2
9
12
30
C
10
2
5
50
Demand
35
15
50
4. (a) Give the meaning of assignment problem and state its mathematical
7
formulation.
(b) Minimize the line by solving given assignment problem.
7
Persons
Jobs
P
Q
R
S
A
12
15
18
8
B
13
10
9
14
C
10
12
15
13
D
7
8
9
14
OR
4. (a) Write Hungarian method for solving assignment problem.
7
(b) Four different jobs can be done on four different machines.
7
The below matrix gives the cost in rupees of producing job on each machine.
Machines
Worker
I
II
III
IV
A
5
7
11
6
B
8
5
9
6
C
4
7
10
7
D
10
4
8
3
Assign jobs so as to minimize total assignment cost.
RAN-3285 ]
[ 6 ]
[ 140 ]

This post was last modified on 03 January 2021