Download SGBAU BSc 2019 Summer 5th Sem Mathematics Mathematical Methods Question Paper

Download SGBAU (Sant Gadge Baba Amravati university) BSc 2019 Summer (Bachelor of Science) 5th Sem Mathematics Mathematical Methods Previous Question Paper

AW?l 737
B.Sc. (Part?Ill) Semester?V Examination
SS 2 MATHEMATICS (New)
(Mathematical Methods)
Paper?X
Time : Three Hours] [Maximum Marks : 60
Note :? (1) Question No.1 is compulsory and attempt it once.
(2) Solve ONE question from each Unit.
1. Choose the correct alternative (1 mark each) 2
(1)
(ii)
(Iii)
(iv)
(V)
If pn(x) is the solution of Legendre?s D.E., then pn(?1) is :
(a) -1 (b) l
(C) (-1)? (d) 0
The value of integral IX P100 dX ,where p (x) is chendre? s polynomial of degree 1,
-l
equals:
, 3 b 1
i d
(c) 15 <) 0
The value of J 100?) equals :
) 1? i cos x b 3? sin x
(a mt ( ) mt
mt mt .
(c) T cos x (d) ~2? sm x
Eigen ?mctions corresponding to different Eigen values are :
(a) Linearly dependent (b) Linearly independent
(c) Real (d) None
The coef?cient in a halfrange sine series for the function f(x) = sin x de?ned on [0, i] is
given by :
i . mcx mrx
sm x cos ?? dx cos x cos ?? dx
2 ? . . ?
(c) E Ism x sm BZ?X dx (d)%jsin x sinn ?? de
o 0 .
YBC?15305 l (Contd.)

(w') The function f(xt = (7 sin x): is :
(a) Odd (b) liven
(c) Even and Odd (?d) None 0fthcse
(vii) If Lff(t)] = F(s). thcr L[f(at)] is :
1 t s
(a) F(s?a) (b) ""(?J
(viii) The value of L"[~Al J is :
_s ? a _;
(3) 1 (b) t
(c) c? (d) e?
(ix) The Fourier sinc transform af?x) = e ?x'. x 2 O is :
l X
(a) - + 2'? (b) 1 _ )3
27? 1
(C) 1 _ )3 (d) ET
(x) [fF[f(x)] = F(A), then the Fourier transform of f(ax) is :
K 1(7?
(a) F[?] (b) V-IF (?Ja?
a la! a
J?FO) a?O d ??F[)?] 3:0 10
(9) 12.1 H la! a,
UNlT?I
2. (a) Show that pn(x) is the coef?cient of h" in the ascending power series expansion of
(1 ? 2xh * h3)""'3. 5
(b) Prove that npn = xp'1 - pi, l 3?
l 2
(c) Prove that x =?p0(x) p(x). 2
YBC?l 5305 2 (Contd.)

(Q)
4. (a)
(b)
(C)
(q)
(r)
6. (a)
(b)
7. (p)
(q)
8. (a)
(b)
(C)
2
2n+ll
1
Prove that [[px(x)]zdx =
-l
d?
2?n! dx"
Prove that px(x) = (x2 -1)?.
UNIT?ll
Prove that 13,2(x) = "?2? (5m X ? cos x).
TIX x
Prove that XJL = pJp ? xde.
b
Evaluate [10(X) ?J.(x)dx,
Prove that Eigen values of the S-L problem are real.
Prove that (xP-Jp) = x"Jp_l
Prove that J_L,2(x) =41 cos x.
nx
UNlT?III
a0
L)
DJ
If the trigonometric series 3 + 2 (an cos nx + bn sin nx) converges unifome t0 f(x) in
n-I
c S x < c + 2n, then ?nd the Fourier coef?cient of f(x).
Obtain Fourier Series in [0, 2] for the function f(x) ?? x1.
Obtain Fourier Series in [?n, 1t] for the function :
f() ?1t,?1:X:
x ,0Obtain F ouricr cosine series in [0, 1:] for the function f(x) = sin x.
UNIT?IV
?
Prove that th" -f(t)| = (?l)n :n
5
Find L[sin t - cos 2t - cos 3t].
F(s), n = 1,2,3 .....
1
Show that [.(t") = 1%? s > 0.
s
YBC?IS305 3
(J I
U!
(Contd. )

(q)
(r)
10. (a)
(b)
(c)
11. (p)
(q)
YBC?l 5305
Solve the 0.1:. y" ~ 4y' ~ -81, y(O) ? yw) = 0.
1
Fmd the Inverse Laplace transtorm of (S _ 23(5 + 2): by usmg Convoluuon theorem.
pmve chatL (mu) ?~ 53L(u(x. t): ? su(x, O) ? u?(x. O).
UNlT?V
Find the ?nite Fourier sine and cosine transform of f(x) = sin 2x in (0. 1:).
F ind the Fourier transfom1 0f the function :
f( )_ l, |x[x? o, !x|>l
(
Prove 'that If?(x) sing?;? dx 2: ?n??Ttl?;(:n).
O i
Find the Fourier sine and cosine transfom of the function f(x) = x?? ', n > 0.
Find ?nite Fourier cosine transform of u? and u?; where u = u( <, t).
[J
'JI
525

This post was last modified on 10 February 2020